Nondestructive Measurement of the Coating Thickness in the Simulated TRISO-Coated Fuel Particle Using Micro-Focus X-ray Radiography

마이크로포커스 X-선 투과 영상을 이용한 모의 TRISO 핵연료 입자 코팅 층 두께 비파괴 측정

  • Kim, Woong-Ki (Nuclear Hydrogen Technology Development & Demonstration Project, Korea Atomic Energy Research Institute) ;
  • Lee, Young-Woo (Nuclear Hydrogen Technology Development & Demonstration Project, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Yeon (Nuclear Hydrogen Technology Development & Demonstration Project, Korea Atomic Energy Research Institute) ;
  • Park, Jung-Byung ;
  • Ra, Sung-Woong
  • 김웅기 (한국원자력연구소 원자력수소사업추진반) ;
  • 이영우 (한국원자력연구소 원자력수소사업추진반) ;
  • 박지연 (한국원자력연구소 원자력수소사업추진반) ;
  • 박정병 (㈜디알젬) ;
  • 나성웅 (충남대학교 전자공학과)
  • Published : 2006.04.30

Abstract

TRISO(tri-isotropic)-coated fuel particle technology is utilized owing to its higher stability at a high temperature and Its efficient retention capability for fission products In the HTGR(high temperature gas-reeled reactor). The typical spherical TRISO fuel panicle with a diameter of about 1mm is composed of a nuclear fuel kernel and outer coating layers. The outer coating layers consist of a buffer PyC(pyrolytic carbon) layer, Inner PyC(1-PyC) layer, SiC layer, and outer PyC(O-PyC) layer Most of the Inspection Items for the TRTSO-coated fuel particle depend on destructive methods. The coating thickness of the TRISO fuel particle can be nondestructively measured by the X-ray radiography without generating radioactive wastel. In this study, the coaling thickness for the simulated TRISO-coated fuel particle with $ZrO_2$ kernel Instead of $%UO_2$ kernel was measured by using micro-focus X-ray radiography with micro-focus X-ray generator and flat panel detector The radiographic image was also enhanced by image processing technique to acquire clear boundary lines between coating layers. The coaling thickness wat effectively measured by applying the micro-focus X-ray radiography The inspection process for the TRISO-coated fuel particles will be improved by the developed micro-focus X-ray radiography and digital image processing technology.

차세대 원자로로 부각되고 있는 고온가스로에서는 윈자로에서는 고온 안정성 및 핵분열생성물 차단 성능이 우수한 TRISO(tri-isotropic) 핵연료를 사용하고 있다. TRISO 핵연료 입자는 직경이 약 1mm인 구 형태로 입자의 중심에는 직경 0.5mm의 핵연료 커널(kernel)이 포함되며 커널 외곽을 코팅 층이 에워싸고 있다. 이 코팅 층은 완충(buffer) PyC(pyrolytic carbon)층, 내부 PyC층, SiC층, 그리고 외부 PyC층으로 구성되어 있다. 각 코팅 층의 두께는 수십-백${\mu}m$ 범위이고 사양으로 정해져 있으며, 본 연구에서는 각 코팅 층의 두께를 비파괴적으로 측정하기 위하여 마이크로포커스 X-선 발생장치와 고해상도 X-선 평판(flat panel) 검출기초 구성된 정밀한 X-선 래디오그래피 장치를 개발하였다. 개발된 마이크로 X-선 래디오그래피 장치를 이용하여 $UO_2$ 핵물질 $ZrO_2$를 커널로 사용한 모의 TRISO 핵연료 입사에 대한 투과 영상을 획득한 후 디지털 영상처리 기술을 이용하여 코팅 층 사이의 경계선이 구분 가능하도록 영상을 개선하고 디지털 영상처리 알고리듬을 개발하여 코팅 층의 두께를 파동으로 측정하였다.

Keywords

References

  1. 박지연, 김원주, 이영우, 장종화 '고온가스로 핵연료의 TRISO 코팅 공정 개발,' KAERI/AR-652/2002, (2002)
  2. Kazuhiro Sawa, Shuichi Suzuki and Shusaku Shiozawa, 'Safety criteria and quality control of HTTR fuel,' Nuclear Engineering and Design 208, pp. 305-313, (2001) https://doi.org/10.1016/S0029-5493(01)00358-2
  3. Guenter Lohnert, 'Topical issue on Japan's HTTR,' Nuclear Engineering and Design, 233, pp. 1-3, (2004) https://doi.org/10.1016/j.nucengdes.2004.08.003
  4. Masuro Ogawa and Tetsuo Nishihara, 'Present status of energy in Japan and HTTR project,' Nuclear Engineering and Design, 233, pp. 5-10, (2004) https://doi.org/10.1016/j.nucengdes.2004.07.018
  5. Kazuhiro Sawa and Shohei Veta, 'Research and development on HTGR fuel in the HTTR project,' Nuclear Engineering and Design 233, pp. 163-172, (2004) https://doi.org/10.1016/j.nucengdes.2004.08.006
  6. Xioming Fu, Masashi Takahashi, Shouhei Veta and Kazuhiro Sawa, 'Comparison of HTGR fuel design, manufacture and quality control methods between Japan and Chnia,' JAERI-Tech, 2002-049, (2002)
  7. Chunhe Tang, Yaping Tang, Junguo Zhu, Xueliang Qiu, Jihong Liand Shijiang Xu, 'Research and development of fuel element for Chniese 10MW high temperature gas-cooled reactor,' Journal of Nuclear Science and Technology, Vol. 37, No. 9, pp. 802-806, (2000) https://doi.org/10.3327/jnst.37.802
  8. Chunhe Tang, Yaping Tang, Junguo Zhu, Yanwen Zou, Jihong Liand Xiaojun Ni, 'Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor,' Nuclear Engineering and Design 218, pp. 91-102, (2002) https://doi.org/10.1016/S0029-5493(02)00201-7
  9. John Hunn, 'Coated particle fuel characterization lab for the advanced gas reactor fuel development and qualification program,' ANS/GLOBAL (2003)
  10. Ronald L. Hockey, Leonard J. Bond, Charles R. Batishkco, Joseph N. Gray, John J. Saurwein and Richard A. Lowden, 'Advances in automated QA/QC for TRISO fuel particle production,' Proceedings of ICAPP 2004, (2004)
  11. W. K. Kim, Y. W. Lee, J. Y. Park and S. W. Ra, 'Simulation of an X-ray radiography for the coating thickness measurement in the TRISO-coated fuel particle,' 한국원자력학회 추계학술발표회 논문집, (2005)
  12. W. K. Kim, Y. W. Lee and S. W. Ra, 'Simulation of the digital image processing algorithm for the coating thickness automatic measurement of the TRISO-coated fuel particle,' International Journal of Information Processing System, Vol. 1, No. 1, pp. 36-40 (2005) https://doi.org/10.3745/JIPS.2005.1.1.036
  13. Rafael C. Gonzalez and Richard E. Woods, 'Digital image processing,' Addison Wesley, pp. 514-518, (1992)
  14. Rafael C. Gonzalez and Richard E. Woods, 'Digital image processing,' Addison Wesley, pp. 189-201, (1992)