• Title/Summary/Keyword: Pyrolysis of Phenolic

Search Result 34, Processing Time 0.027 seconds

Pyrolysis of Lignin Obtained from Cinnamyl Alcohol Dehydrogenase (CAD) Downregulated Arabidopsis Thaliana

  • Kim, Kwang Ho;Kim, Jae-Young;Kim, Chang Soo;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.442-450
    • /
    • 2019
  • Despite its potential as a renewable source for fuels and chemicals, lignin valorization still faces technical challenges in many aspects. Overcoming such challenges associated with the chemical recalcitrance of lignin can provide many opportunities to innovate existing and emerging biorefineries. In this work, we leveraged a biomass genetic engineering technology to produce phenolic aldehyde-rich lignin structure via downregulation of cinnamyl alcohol dehydrogenase (CAD). The structurally altered lignin obtained from the Arabidopsis thaliana CAD mutant was pyrolyzed to understand the effect of structural alteration on thermal behavior of lignin. The pyrolysis was conducted at 400 and $500^{\circ}C$ using an analytical pyrolyzer connected with GC/MS and the products were systematically analyzed. The results indicate that aldehyde-rich lignin undergoes fragmentation reaction during pyrolysis forming a considerable amount of C6 units. Also, it was speculated that highly reactive phenolic aldehydes facilitate secondary repolymerization reaction as described by the lower yield of overall phenolic compounds compared to wild type (WT) lignin. Quantum mechanical calculation clearly shows the higher electrophilicity of transgenic lignin than that of WT, which could promote both fragmentation and recondensation reactions. This work provides mechanistic insights toward biomass genetic engineering and its application to the pyrolysis allowing to establish sustainable biorefinery in the future.

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Formation of Pyro-products by the Pyrolysis of Monobromophenols

  • Na, Yun-Cheol;Seo, Jung-Ju;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1276-1280
    • /
    • 2003
  • Thermal behavior of bromphenols was investigated by direct pyrolysis at high temperature. The thermal degradation products formed by the pyrolysis of mono-bromophenols (o-, m-, and p-) were identified by gas chromatography-mass spectrometry. During the pyrolysis reactions, several kinds of dioxins and furans were produced, and the relative ratio of pyro-products was dependent on the substituted position of bromine in phenolic structure due to the effect of symmetry and steric hindrance. The formation of dioxins can be explained by the phenoxy radical addition and Br atom elimination at an ortho-carbon site on phenolic structure. On the other hand, the formation of furans can be explained by the ortho-ortho carbon coupling of phenoxy radicals at unsubstituted sites to form o, o'-dihydroxydiphenyl intermediate via its keto-tautomer, followed by $H_2O$ elimination. The pyrolysis temperature has also a substantial effect on the dimerized products quantities but little effect on the type of pyro-products. Moreover, the formation mechanism of pyro-products was suggested on the basis of products identified.

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

Effects of Coating Conditions on the Thickness and Morphology of Alumina- or Carbon-Coated Layers on SiC Whiskers (알루미나 또는 카본 코팅 SiC 휘스커의 코팅층 두께 및 형상에 미치는 코팅조건의 영향)

  • 배인경;장병국;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.513-520
    • /
    • 1999
  • Alumina-coated SiC whiskers wee prepared by the calcination (1150$^{\circ}C$, 1h, Ar) of the alumina hydrate layer which was precipitated homogeneously on whisker surface from a solution of Al2(SO4)3 and urea as a precipitant. In addition carbon coated SiC whiskers were prepared by the pyrolysis (1000$^{\circ}C$, 4h Ar) of phenolic resin coated whisker. The effects of coating conditions on the thickness and morphology of the coated layers were examined by SEM and TEM. It was found that Al2O3-coating layers become thinner and more uniform with decreasing the Al2(SO4)3 concentration. Thin (0.075-0.1$\mu\textrm{m}$) and uniformly alumina-coating layers were obtained at the Al2(SO4)3 concentration 0.010mol/l. On the other han carbon-coating layers were uniform but very thin (5-16 nm) in thickness. For thicker carbon-coating layers ethanol as a disperse medium was found to be more efficient compared tousing acetone.

  • PDF

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments (고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.711-718
    • /
    • 2011
  • The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace (항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가)

  • Seo, Sang-Kyu;Kim, Yun-Chul;Bae, Ji-Yeul;Hahm, Hee-Chul;Hwang, Tae-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.355-363
    • /
    • 2021
  • Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.

Petroleomic Characterization of Bio-Oil Aging using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

  • Smith, Erica A.;Thompson, Christopher;Lee, Young Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.811-814
    • /
    • 2014
  • Bio-oil instability, or aging, is a significant problem for the long-term storage of fast pyrolysis oils. We investigated bio-oil aging at the molecular level using Fourier-transform ion cyclotron resonance mass spectrometry. Petroleomic analysis suggests that bio-oil aging is resulted from the oligomerization of phenolic lignin products whereas 'sugaric' cellulose/hemicellulose products have negligible effect.

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments (열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석)

  • Choi, Youn Gyu;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.597-604
    • /
    • 2013
  • A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.

Comparison of Pyrolytic Components in lamina and Midrib of Flue-Cured Tobacco Leaves

  • Lee, Jae-Gon;Jang, Hee-Jin;Kwag, Jae-Jin;Lee, Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.2
    • /
    • pp.176-183
    • /
    • 2000
  • This study was conducted to compare the volatile components of lamina(cutter group) and midrib of flue-cured tobacco leaves by two analytical methods, Curie-Point pyrolysis and Purge & Trap headspace technique. The pyrolysis of lamina and midrib part of tobacco leaves was performed at the temperature of $330^{\circ}C$, $650^{\circ}C$, and $920^{\circ}C$ by Curie-Point Pyrolyzer, and 33 compounds were identified in the pyrolyzates by GC/MSD. The composition of the components identified showed a quite difference between lamina and midrib. However, the amount of the pyrolyzed products from the both of lamina and midrib was increased with temperature increase except that of acetic acid, furfural, and nicotine. The content of phenolic compounds including phenol, 4-methyl phenol, and 3-methyl phenol was higher in midrib than in lamina, while that of furan compounds such as 2,3-dihydrobenzofuran, 5-hydroxymethyl furfural, was high in lamina. Interestingly, acetamide, 2-propenamide and 3-acetoxy pyridine were not defected in the pyrolyzates of lamina. By Purge & Trap headspace technique, 28 volatile components were identified in both lamina and midrib. The composition of the identified compounds and their chromatograpic patterns also showed the complete difference between the two. The content of solanone, $\beta$-damascone, $\beta$-damascenone, and megastigmatrienones, key components of tobacco aroma, was much higher in lamina than in midrib. The results indicate that lamina contains much more carbonyl compounds known to enhance the smoke taste of cigarette, whereas midrib takes nitrogenous and phenolic compounds, which are known to cause a deteriorate effect of smoke such as irritation.

  • PDF