• Title/Summary/Keyword: Pyrolysis at low temperature

Search Result 109, Processing Time 0.023 seconds

Thermo-Degradation Kinetics of Polyethylene (폴리에틸렌의 열분해 Kinetics)

  • Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.432-437
    • /
    • 1999
  • Pyrolysis of polyethylene was carried out in the stainless steel reactor of internal volume of $10cm^3$. Pyrolysis reactions were performed at temperature $390{\sim}450^{\circ}C$ and the pyrolysis products were collected separately as reaction products and gas products. The molecular weight distributions(MWDs) of each product were determined by HPLC-GPC and GC analysis. Distribution balance equation for MWDs of random and specific products were proposed to account for initiation-termination and propagation-depropagation, such as hydrogen abstraction, chain cleavage, coupling of polymer and radical. A separate chain-end scission process produces low molecular weight noncondensable gases(C1 through C5) of average molecular weight 38. Activation energies of the random-chain scission and chain-end scission rate parameters, respectively, were determined to be 35, 17 kcal/mole.

  • PDF

PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES. (얇은막 산화철 광반도성 전극의 제조와 그 특성)

  • Kim, Il-Kwang;Kim, Yon-Geun;Park, Tae-Young;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

Production properties of pyrolytic matter of PP and PS plastics in n low temperature pyrolysis condition (저온 열분해조건에서 PP 및 PS계 플라스틱의 열분해물 생성특성 연구)

  • Kim, Sang-Hoon;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.867-873
    • /
    • 2007
  • Thermal degradation characteristics of polypropylene and polystyrene have been studied in the thermogravimetric(TG) reactor and batch-type microreactor. The dynamic thermogravimetric curve of TG provided a valuable information about pyrolysis temperature. It was found that PS was thermally degraded at lower temperature of $30{\sim}50^{\circ}C$ than PP. It was found that the yield and molecular weight of liquid product in the microreactor were decreased with the increase of reaction temperature and time in the case of PP. The production of styrene monomer was significantly increased by the promotion of depolymerization with the increase of temperature and time. The chain-end scission rate parameters were determined to be 50.0 kcal/mole of PP, 45.2 kcal/mole of PS by the Arrhenius plot.

  • PDF

Optical Characteristics of Spherical Phosphors for Low-Voltage FED Operation

  • Yoo, J.S.;Cho, S.H.;Hong, G.Y.;Lee, J.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.143-144
    • /
    • 2000
  • The aerosol pyrolysis technique was introduced to prepare the spherical phosphors for enhancing low-voltage phosphor efficiency. The density, the shape, and the crystallinity of phosphors were controlled by thermal decomposition temperature and phosphor annealing condition. The particle size was adjusted by the precursor concentration and reactor pressure. It was fond that the efficiency of phosphors synthesized in this work was superior to the commercial products at the low-voltage excitation by 1.5 times and the screen efficiency was also higher than that of any value reported in literature.

  • PDF

Effect of Pyrolysis Fuel Oil Based Carbon Coating onto CFX Cathode on High-rate Performance of Lithium Primary Batteries (불화탄소 전극의 열분해 연료유 기반 탄소 코팅이 리튬일차전지의 고율속 성능에 미치는 영향)

  • Sangyeop Lee;Naeun Ha;Seongjae Myeong;Chaehun Lim;Sei-Hyun Lee;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.321-328
    • /
    • 2024
  • The performance of carbon fluoride-based lithium primary batteries (Li/CFX) is limited due to poor rate capability resulting from the low conductivity of carbon fluoride, which is used as the active material. Therefore, in this study, we applied a carbon coating using pyrolysis fuel oil on carbon fluoride to overcome this limitation and considered its electrochemical performance. An amorphous carbon layer was formed on the surface of the carbon fluoride through carbon coating, and the surface physicochemical properties of the carbon fluoride were meticulously considered based on the heat treatment temperature. The advanced research chemical 1000 heat treated at 450 ℃ (ARC@C450) sample, which was commercial carbon fluoride heat-treated at 450 ℃, showed the largest increase in the concentration of sp2 carbon bonds (62%) and the highest formation of semi-ionic C-F bonds. Also, the primary battery using the ARC@C450 sample as a cathode active material exhibited stable discharge capability at the highest rate of 5 C (392 mAh/g), and the Rct value was reduced by 53% compared to the untreated sample. Therefore, we proposed pyrolysis fuel oil-based carbon coating as a method to overcome the low conductivity of carbon fluoride, and the carbon-coated carbon fluoride showed excellent rate performance, suggesting its potential application in high-power primary batteries.

Pyrolysis Characteristics of CCL(Copper Clad Laminate) Based Paper/Phenolic Resin Composites (종이/페놀수지가 주성분인 동박적층판(Copper Clad Laminate)의 열분해 특성)

  • Song, Jae-Hun;Kim, Seung-Do;Ahn, Hyun-Cheol;Kim, Gyung-Soo;Kim, Sang-Bum;Jung, Jae-Sung;Gong, Sung-Ho;Cho, Young-Gae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1013-1019
    • /
    • 2007
  • Electronic wastes have increased tremendously. However, any reliable treatment methodologies have rarely been established. Electronic wastes have posed serious disposal problem due to their physico-chemical stability. This paper investigated the application possibility of pyrolysis for the purpose of recycling the p-CCL(phenol based Copper Clad Laminate). Thermogravimetric analysis(TGA) was used to investigate the thermal decomposition pattern of p-CCL. We elucidated the characteristics of pyrolysis by-products at operating temperatures of 280, 350 and $600^{\circ}C$. GC/MS and FT-IR were used to characterize the liquid by-products along with general characterization methods such as Ultimate Analysis, Proximate Analysis and Heating Value, whereas general characterization methods were only introduced for the solid by-products. At a heating rate of $5^{\circ}C$/min, TGA curves exhibited three decomposition stages: (1) low-temperature decomposition region$(<280^{\circ}C)$, (2) medium temperature region$(280\sim350^{\circ}C)$ and (3) high-temperature region$(>350^{\circ}C)$. The major compounds of liquid by-products at low- and medium-temperatures were accounted for by water and phenol, whereas branched phenols and furans were major compounds at high-temperatures. As the temperature increases, volatile quantities decreased but the fixed carbon increased. High heating values of solid by-products($7,400\sim7,600$ kcal/kg) would suggest that the solid by-products could be applicable as fuel. In addition, high fixed carbon but low ash content of the solid by-products offered an implication that they are capable of being upgradable for adsorbent after applying appropriate activating process.

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure (축분 고형연료의 열분해 동역학 연구)

  • Jang, Eun-Suk;Song, Eunhye;Yoon, Jonghyuk;Kim, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.443-451
    • /
    • 2020
  • In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.

Effects of Particle Size and Pyrolysis Temperature of Oyster Shell on Change of Coastal Benthic Environment (굴 패각의 입경 및 소성 온도에 따른 연안 오염 저서환경 변화 연구)

  • Jeong, IlWon;Woo, Hee-Eun;Lee, In-Cheol;Yoon, SeokJin;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.873-880
    • /
    • 2020
  • After pre-treatment of oyster shells according to particle size (0 ~ 1, 1 ~ 2, 2 ~ 5 mm) and pyrolysis temperature (400(P400), 500(P500), 600(P600), 800(P800)℃), changes in the properties of sediments mixed with pre-treated oyster shells were investigated. The primary component of the oyster shell was changed from CaCO3 to CaO at temperatures above 700℃. The Ca2+ concentration in P800 was 790 mg/L, which was 2 ~ 3 times higher than those in the control and other experimental samples. Ca2+ elution significantly increased at the pyrolysis temperature over than 600℃. In oyster shells pyrolyzed over 600℃, the pH of the pore water increased by 0.1 ~ 0.5, due the hydrolysis of CaO formed by the pyrolysis of CaCO3. The PO4-P of the overlying and pore water in P600 and P800 were 0.1 ~ 0.2 mg/L lower than those of the control. The increased pH and elution of Ca2+ from oyster shells should suppress the upwelling of PO4-P from the sediment. Based on the above results, it was confirmed that the pyrolysis temperature of oyster shells influenced NH3-N and PO4-P concentrations in the sediment; however, the particle size of oyster shells had little effect. The results of this study can be used as a foundation for research on the use of pyrolyzed oyster shells to improve low-contamination coastal benthic environments.

Selectrive chemical vapor deposition of aluminum for the metallization of high level IC (고집적회로 금속선 형성을 위한 화학증작 알루미늄의 선택적 증착)

  • 이경일;김영성;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.31-37
    • /
    • 1994
  • Aluminum films were deposited by the pyrolysis of triisobutylaluminum(TIBA) in a cold wall LPCVD system for the metallization of high level IC. the selectivity on Si/SiO2 substrate and the contact resistance on submicron contacts were investigated. The carbon free aluminum film could be obtained when the aluminum film was deposited at low substrate temperature. Contact resistances of CVD Al/n+ Si contacts whose contact size was 0.5 .mu.m werre as low as 20~40.OMEGA./ea, which is 30~50% of contact resistance obtained by sputtering technique.

  • PDF

Ignition of a solid fuel by thermal radiation (열복사에 의한 고체연료 점화 연구)

  • Kim, Myeong-Hyo;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.294-302
    • /
    • 1998
  • Ignition characteristics of a vertical solid fuel plate with block have been investigated experimentally. For low radiant heat flux, ignition does not occur in a vertical solid fuel plate without block. In the case with the block on a vertical fuel plate, however, ignition can occur by increasing the residence time and the time to absorb the incident radiation flux by fuel vapor in gas phase. The ignition occurs below block and the point varies according to the block location and the block height. As the block height increases, the block locates at higher position, and the hot wall temperature increases, the ignition delay time decreases. Also as the initial temperature of fuel plate rises, the ignition delay time of the solid fuel plate decreases. The temperature distribution of solid fuel plate with block is nearly proportional to the radiant heat flux distribution. Therefore, the effect temperature by natural convection heat transfer is of the same order as that of inhibition of temperature increase by pyrolysis.