DOI QR코드

DOI QR Code

굴 패각의 입경 및 소성 온도에 따른 연안 오염 저서환경 변화 연구

Effects of Particle Size and Pyrolysis Temperature of Oyster Shell on Change of Coastal Benthic Environment

  • 정일원 (부경대학교 해양공학과) ;
  • 우희은 (부경대학교 해양공학과) ;
  • 이인철 (부경대학교 해양공학과) ;
  • 윤석진 (국립수산과학원 독도연구센터) ;
  • 김경회 (부경대학교 해양공학과)
  • Jeong, IlWon (Department of Ocean Engineering, Pukyong National University) ;
  • Woo, Hee-Eun (Department of Ocean Engineering, Pukyong National University) ;
  • Lee, In-Cheol (Department of Ocean Engineering, Pukyong National University) ;
  • Yoon, SeokJin (Dokdo Fisheries Research Center, National Institute of Fisheries Science) ;
  • Kim, Kyunghoi (Department of Ocean Engineering, Pukyong National University)
  • 투고 : 2020.11.03
  • 심사 : 2020.12.28
  • 발행 : 2020.12.31

초록

굴 패각을 입경(0 ~ 1, 1 ~ 2, 2 ~ 5 mm) 및 소성온도(400(P400), 500(P500), 600(P600), 800(P800)℃)별로 전처리 한 후, 퇴적물과 혼합된 실내실험을 통해 퇴적물의 성상변화를 조사하였다. 굴 패각의 주요 성분인 CaCO3는 700℃ 이상의 소성 온도에서 열분해 되어 CaO로 변화하는 것으로 나타났다. P800의 Ca2+ 농도는 약 790 mg/L로 대조구 및 다른 실험구들에 비해 약 2 ~ 3배 높게 나타나 고온 소성 된 굴패각일수록 용출되는 Ca2+는 높은 것으로 확인되었다. 600℃ 이상의 온도에서 소성된 굴 패각에서는 CaCO3의 열분해로 형성된 CaO의 가수분해를 통해 간극수 내의 pH가 0.1 ~ 0.5 증가한 것으로 나타났다. 간극수 내의 NH3-N은 대조구보다 약 2.2 ~ 7.6 mg/L의 범위로 증가하였으며, 이는 가수분해 과정에서 발생한 열, Ca2+에 의한 미생물 활동 억제, 소성 과정에서 증가한 굴 패각 공극을 통한 산소 공급 등이 복합적으로 작용한 결과로 판단된다. P600 및 P800의 직상수 및 간극수 내의 PO4-P 농도는 대조구보다 약 0.1 ~ 0.2 mg/L 낮게 나타났으며 이는 소성 굴 패각으로 인한 pH 증가 및 PO4-P와의 화학적 반응으로 판단된다. 이상의 결과를 통해 소성 온도에 따라 굴 패각은 퇴적물 내의 NH3-N 및 PO4-P의 농도변화에 영향을 미치는 것으로 확인되었으나, 입경에 의한 영향은 크지 않은 것으로 확인되었다. 본 연구의 결과는 향후 소성 굴 패각을 낮은 오염도의 연안 저서환경을 개선시키기 위한 기초자료로 활용 될 수 있을 것을 판단된다.

After pre-treatment of oyster shells according to particle size (0 ~ 1, 1 ~ 2, 2 ~ 5 mm) and pyrolysis temperature (400(P400), 500(P500), 600(P600), 800(P800)℃), changes in the properties of sediments mixed with pre-treated oyster shells were investigated. The primary component of the oyster shell was changed from CaCO3 to CaO at temperatures above 700℃. The Ca2+ concentration in P800 was 790 mg/L, which was 2 ~ 3 times higher than those in the control and other experimental samples. Ca2+ elution significantly increased at the pyrolysis temperature over than 600℃. In oyster shells pyrolyzed over 600℃, the pH of the pore water increased by 0.1 ~ 0.5, due the hydrolysis of CaO formed by the pyrolysis of CaCO3. The PO4-P of the overlying and pore water in P600 and P800 were 0.1 ~ 0.2 mg/L lower than those of the control. The increased pH and elution of Ca2+ from oyster shells should suppress the upwelling of PO4-P from the sediment. Based on the above results, it was confirmed that the pyrolysis temperature of oyster shells influenced NH3-N and PO4-P concentrations in the sediment; however, the particle size of oyster shells had little effect. The results of this study can be used as a foundation for research on the use of pyrolyzed oyster shells to improve low-contamination coastal benthic environments.

키워드

참고문헌

  1. Abel, S., I. Nybom, K. Maenpaa, S. E. Hale, G. Cornelissen, and J. Akkanen(2017), Mixing and capping techniques for activated carbon based sediment remediation - Efficiency and adverse effects for Lumbriculus variegatus, Water Research, Vol. 114, pp. 104-112. https://doi.org/10.1016/j.watres.2017.02.025
  2. Alidoust, D., M. Kawahigashi, S. Yoshizawa, H. Sumida, and M. Watanabe(2015), Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells, Journal of Environmental Management, Vol. 150, pp. 103-110. https://doi.org/10.1016/j.jenvman.2014.10.032
  3. Asaoka, S., T. Yamamoto, I. Yoshioka, and H. Tanaka(2009), Remediation of coastal marine sediments using granulated coal ash, J Hazard Mater, Vol. 172, No. 1, pp. 92-98. https://doi.org/10.1016/j.jhazmat.2009.06.140
  4. Fan, Y., Y. Li, D. Wu, C. Li, and H. Kong(2017), Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus, Water Research, Vol. 123, pp. 1-11. https://doi.org/10.1016/j.watres.2017.06.031
  5. Guo, H. and S. C. Pennings(2012), Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant, Oecologia, Vol. 170, No. 3, pp. 789-798. https://doi.org/10.1007/s00442-012-2356-2
  6. Hayashi, A., T. Watanabe, R. Kaneko, A. Takano, K. Takahashi, Y. Miyata, S. Matsuo, T. Yamamoto, R. Inoue, and T. Ariyama(2013), Decrease of Sulfide in Enclosed Coastal Sea by Using Steelmaking Slag, ISIJ International, Vol. 53, No. 10, pp. 1894-1901. https://doi.org/10.2355/isijinternational.53.1894
  7. Hellen, T., J. Mesquita-Guimaraes, B. Henriques, F. Silva, and M. Fredel(2019), The Potential Use of Oyster Shell Waste in New Value-Added By-Product, Resources, Vol. 8, pp. 1-15. https://doi.org/10.3390/resources8010001
  8. Jeong, I. W., H. E. Woo, I. C. Lee, J. S. Kim, and K. H. Kim(2019), Evaluation of Nutrients Removal using Pyrolyzed Oyster Shells, Journal of the Korean Society of Marine Environment and Safety, Vol. 25, pp. 906-913. https://doi.org/10.7837/kosomes.2019.25.7.906
  9. Kim, H. C., H. E. Woo, I. W. Jeong, S. J. Oh, S. H. Lee, and K. H. Kim(2019), Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature, Journal of the Korean Society of Marine Environment and Safety, Vol. 25, No. 1, pp. 74-80. https://doi.org/10.7837/kosomes.2019.25.1.074
  10. Kim, K. H., S. Asaoka, T. Yamamoto, S. Hayakawa, K. Takeda, M. Katayama, and T. Onoue(2012), Mechanisms of hydrogen sulfide removal with steel making slag, Environ Sci Technol, Vol. 46, No. 18, pp. 10169-10174. https://doi.org/10.1021/es301575u
  11. Kim, K. H., I. C. Lee, Y. K. Kang, and T. Hibino(2015), Remediation of Muddy Tidal Flat using Porous Pile, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 27, No. 1, pp. 9-13. https://doi.org/10.9765/KSCOE.2015.27.1.9
  12. Kim, K. H., T. Hibino, T. Yamamoto, S. Hayakawa, Y. Mito, K. Nakamoto, and I. C. Lee(2014), Field experiments on remediation of coastal sediments using granulated coal ash, Mar Pollut Bull, Vol. 83, No. 1, pp. 132-137. https://doi.org/10.1016/j.marpolbul.2014.04.008
  13. Kim, K. M., K. H. Kim, S. Asaoka, I. C. Lee, D. S. Kim, and S. Hayakawa(2018), Quantitative Measurement on Removal Mechanisms of Phosphate by Class - F Fly Ash, International Journal of Coal Preparation and Utilization, pp. 1-12.
  14. Kwon, H. B., C. W. Lee, B. S. Jun, J. d. Yun, S. Y. Weon, and B. Koopman(2004), Recycling waste oyster shells for eutrophication control, Resources, Conservation and Recycling, Vol. 41, No. 1, pp. 75-82. https://doi.org/10.1016/j.resconrec.2003.08.005
  15. Lee, S. W., Y. M. Kim, R. H. Kim, and C. S. Choi(2008), Nano-structured biogenic calcite: A thermal and chemical approach to folia in oyster shell, Micron, Vol. 39, No. 4, pp. 380-386. https://doi.org/10.1016/j.micron.2007.03.006
  16. MOF(2016), Ministry of Ocean and Fisheries, Research on improvement method of marine pollution sediment management system. TRKO201900000976, 1525006332.
  17. OECD(2002), Test No. 308: Aerobic and Anaerobic Transformation in Aquatic Sediment Systems, OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris.
  18. Pereira, A., B. Tassin, and S. E. Jorgensen(1994), A model for decomposition of the drown vegetation in an Amazonian reservoir, Ecological Modelling, Vol. 75-76, pp. 447-458. https://doi.org/10.1016/0304-3800(94)90039-6
  19. Shih, P. K. and W. L. Chang(2015), The effect of water purification by oyster shell contact bed, Ecological Engineering, Vol. 77, pp. 382-390. https://doi.org/10.1016/j.ecoleng.2015.01.014
  20. Smith, K. A., L. E. Goins, and T. J. Logan(1998), Effect of Calcium Oxide Dose on Thermal Reactions, Lime Speciation, and Physical Properties of Alkaline Stabilized Biosolids, Water Environment Research, Vol. 70, No. 2, pp. 224-230. https://doi.org/10.2175/106143098X127071
  21. Taneez, M., C. Hurel, F. Mady, and P. Francour(2018), Capping of marine sediments with valuable industrial by-products: Evaluation of inorganic pollutants immobilization, Environmental Pollution, Vol. 239, pp. 714-721. https://doi.org/10.1016/j.envpol.2018.04.089
  22. Whittinghill, K. A. and S. E. Hobbie(2012), Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra, Biogeochemistry, Vol. 111, No. 1, pp. 569-581. https://doi.org/10.1007/s10533-011-9688-6
  23. Wu, M., F. Yang, Q. Yao, L. Bouwman, and P. Wang(2020), Storm-induced sediment resuspension in the Changjiang River Estuary leads to alleviation of phosphorus limitation, Marine Pollution Bulletin, Vol. 160, pp. 111628. https://doi.org/10.1016/j.marpolbul.2020.111628
  24. Yamamoto, T., K. H. Kim, and K. Shirono(2015), A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash, Mar Pollut Bull, Vol. 90, No. 1-2, pp. 54-9. https://doi.org/10.1016/j.marpolbul.2014.11.022
  25. Yamamoto, T., S. Kondo, K. H. Kim, S. Asaoka, H. Yamamoto, M. Tokuoka, and T. Hibino(2012), Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells, Mar Pollut Bull, Vol. 64, No. 11, pp. 2428-2434. https://doi.org/10.1016/j.marpolbul.2012.08.002
  26. Yang, E. I., S. T. Yi, and Y. M. Leem(2005), Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties, Cement and Concrete Research, Vol. 35, No. 11, pp. 2175-2182. https://doi.org/10.1016/j.cemconres.2005.03.016
  27. Yen, H. Y. and J. H. Chou(2016), Water purification by oyster shell bio-medium in a recirculating aquaponic system, Ecological Engineering, Vol. 95, pp. 229-236. https://doi.org/10.1016/j.ecoleng.2016.06.065