• Title/Summary/Keyword: Pyro Explosion

Search Result 7, Processing Time 0.019 seconds

Development of Shock Testing M/C to Simulate Pyro-technic Device Explosion of Space vehicle (우주비행체 분리장치 작동에 의한 충격현상 모의 시험기 개발)

  • Kim, Hong-Bae;Oh, Jin-Ho;Moon, Sang-Mu;Woo, Sung-Hyun;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.581-586
    • /
    • 2000
  • Explosively activated pyro-technic device is used to release exhausted rocket booster or payloads at prescribed times in the rocket's flight. It creates pyro-shock environment that rocket or payload components must survive. With the shock spectra acquired from flight data, laboratory test should be performed before flight to check whether all of component can sustain the shock environment. The pyro-shock environment simulation was created by the resonance fixture response to a projectile impact. Desired shock spectra is realized by adjusting the natural frequency of resonance plate and the velocity of impact hammer. This paper describes the development process of Pyro-shock testing machine, which is designed and tested by Korean engineers, to verify components of Korean Sounding Rocket(KSR-3) and the other Korean space vehicle. Both analytical and experimental techniques are introduced in this paper.

  • PDF

The Effect of Pyro Shock on Canister with Composite Sandwich Panel (복합재 샌드위치 패널 발사관의 폭발충격 영향도 분석)

  • Choi, Wonhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.667-673
    • /
    • 2016
  • Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.

Structural Test for Assembly Frame of Payload Fairing (페이로드 페어링 체결 프레임에 대한 구조시험)

  • Lee, Jong-Woong;Jang, Young-Soon;Yi, Yeong-Moo;Kong, Cheol-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1129-1134
    • /
    • 2007
  • Payload fairing protects satellites and electrical equipments from the external environment. Payload fairing is jettisoned before satellite separation. Assembly frame for the separation of payload fairing were assembled with shear bolts. The role of shear bolts is to support structural load during flight and they are cut by explosion of pyro. The assembly frame which is connected by shear bolts is separated after the cutting of shear bolts. In this paper, structural tests and analysis were done for the design of the shear bolt. Compression, bending and shear load apply to the hardware including assembly frame. Test results showed that design of the shear bolt satisfied both structural strength for the support of flight load and required low strength for the cutting of shear bolts.

Development of Laminated Blade Based Shock Absorber Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 적층형 블레이드 기반 충격저감장치)

  • Jae-Seop Choi;Yeon-Hyeok Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2023
  • Pyrotechnic separation devices have been widely used as holding and release mechanism for deployable appendage. However, pyro-shock can cause temporal or permanent damage on shock sensitive components such as electronics, mechanism, and brittle components. This study proposed a low-stiffness blade based passive shock absorber using a multi-layered stiffener laminated with viscoelastic acrylic tapes for reducing transmitted pyro-shock upon explosion of pyrotechnic separation devices. The multi-layered structure with viscoelastic tape has high-damping characteristics to effectively secure structural integrity of low-stiffness blades under the launch environment. The design effectiveness was verified through a shock test by dropping a pendulum. The structural integrity of the shock absorber under a launch environment was evaluated through structural analysis under load conditions with a deployable payload.

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

Shock Separation Test of KOMPSAT-II (다목적 실용위성 2호 충격 분리 시험)

  • 우성현;김홍배;문상무;김영기;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1000-1005
    • /
    • 2003
  • The shock separation test simulates the environmental effects of the spacecraft separation from launch vehicle. The shock separation test for a structural model of KOMPSAT-Ⅱ(Korea Multi-Purpose SATellite Ⅱ) was performed in SITC(Satellite Integration & Test Center) launch environmental test hall at KARI(Korea Aerospace Research Institute) to verify the shock test requirement of the spacecraft, to predict the induced acceleration responses on the primary structures and payloads by the explosion of pyre-lock and to perform mechanical fit check. The spacecraft with S/A was mated vertically to LV(Launch Vehicle) adapter simulator via a clamp band, then hoisted and suspended above a foam test bed by four isolation springs secured to the spacecraft hoist fittings to isolate the payload platform shock wave from the sling elements. For separation process, real pyre-devices were used and the time response signals from 60 accelerometers installed on the interested points was acquired and recorded. The SRS responses for each response channels were calculated and the achieved SRS's on the separation plane was reviewed and evaluated in comparison to the ICD(Interface Control Document) value.

  • PDF

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.