• 제목/요약/키워드: Pyrite rocks

Search Result 118, Processing Time 0.027 seconds

A Preliminary Survey Result of Cu Occurrence in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역 동 산출지 예비조사결과)

  • Kim, In Joon;Lee, Jae Ho;Ryoo, Chung-Ryul;Lee, Bum-Han;Jin, Kwang Min;Davaasuren, Otgon-Erdene;Heo, Chul-Ho;Nam, Hyeong Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.313-324
    • /
    • 2017
  • Tsogttsetsii area, an intrusive complex associated with Cu mineralization, is located in the South Gobi, Mongolia. We performed the cross geochemical and extended exploration survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Late Carboniferous to Early Permian. In the concentrated occurring to malachite appears extensively prophylitic alteration zone having a chlorite and epidote. As results of the survey, Cu contents of potable XRF and of chemical composition for altered rocks ranges 1.08 to 18.3% in the 30 points and 1.08 to 32.9% in the 13 points, respectively. Ore minerals identified in XRD analysis and polarizing microscope that samples of copper oxides were composed mainly of malachite, azurite, permingeatite and cuprite and the other minerals are pyrite, chalcopyrite, pyrargyrite, dickite, calcite, chlorite and epidote. Mineralization can be considered occurring to selectively some granite of the surrounding aplite and faults in the only upper part coming up the hydrothermal solution of the remaining residual magma after the aplite intrusion.

A Geochemical Study on the Dispersion of Heavy Metal Elements in Dusts and Soils in Urban and Industrial Environments (도시 및 산업환경 분진 및 토양중의 중금속 원소들의 분산에 관한 지구화학적 연구)

  • Chon, Hyo-Taek;Choi, Wan-Joo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.317-336
    • /
    • 1992
  • The garden soils, main road dusts, residential road dusts, and playground soils/dusts of Seoul, Geumsan, Onsan, and Taebaek areas were analyzed in order to investigate the level of heavy metal pollution by urbanization and industrialization. The soil pH is in the range of 5.48~8.40 and was generally neutral. The color of soils and dusts is mainly Raw Umber to dark greyish Raw Umber. Some samples from Taebaek city, a coal mining area, showed a deep black color due to contamination by coal dusts. Major minerals of the dusts and soils are quartz, feldspars, and micas, reflecting the composition of the parent rocks. However, pyrite was found as a major mineral in the samples of industrial road dusts of Onsan, a smelting area, and resicential road dusts of Taebaek. Thus, the high level of heavy metals in mining and smelting areas can be explained with the sulfide minerals. The mode of occurences of heavy metals in Seoul, a comprehensive urbanized area, were related to the metallic pollutants and organic materials through observation by scanning eletron microscopy. In main road and residential road dusts of Onsan area, Cd, Zn, and Cu were extremely high. Some industrial road and residential road dusts of Seoul area showed high Cu, Zn, and Pb contents, wereas some garden soils and residential road dusts of Taebaek area were high in As content. In general, the heavy metal contents in dust samples were two to three times higher than those in soil samples. Main road dust samples were the most reflective from the discriminant analysis of multi-element data. Cadmium, Sb, and Se in Onsan area, As in Taebaek area, Pb and Te in Seoul area were most characteristic in discriminating the studied areas. Therefore, Cd in smelting areas, As in coal mining areas, and Pb in metropolitan areas can be suggested as the characteristic elements of each pollution pattern. The dispersion of heavy metal elements in urban areas tends to orignate in main roads and deposit in garden soils through the atmosphere and residential roads. The heavy metal contamination in Seoul is characteristic in areas with high population, factory, road, and traffic decsities. Heavy metal contents are high in the vicinity of smelters in Onsan area and are decayed to background levels from one kilometer away from the smelters.

  • PDF

Genetic Environments of Hydrothermal Copper Deposits in Ogsan Mineralized Area, Gyeongsangbukdo Province (경북 옥산지역 열수동광상의 성인연구)

  • Choi, Seon-Gyu;Choi, Sang-Hoon;Yun, Seong-Taek;Lee, Jae-Ho;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.233-243
    • /
    • 1992
  • Ore mineralization of the Hwanghak copper deposit in the Ogsan area occurred in three stages of quartz (stage I and II) and calcite (stage III) veining along fissures in Early Cretaceous sedimentary rocks. Ore minerals are pyrite, pyrrhotite, chalcopyrite (dominant), sphalerite, hematite, galena, and Ag-, Pb-, and Bi-sulfosalts. These were deposited during the first stage at temperatures between $370^{\circ}C$ and < $200^{\circ}C$ from fluids with salinities between 0.5 and 7.6 equiv. wt. % NaCl. There is evidence of boiling and this suggests pressures of less than 180 bars during the first stage. Equilibrium thermodynamic interpretation accompanying with mineral paragenesis and fluid inclusion data indicates that copper precipitation in the hydrothermal system occurred due to cooling and changing in chemical conditions ($fs_2$, $fo_2$, pH). Gradual temperature decrease from $350^{\circ}$ to $250^{\circ}C$ of ore fluids by boiling and mixing with less-evolved meteoric waters mainly led to copper deposition through destabilization of copper chloride complexes. Sulfur isotope values of sulfide minerals decrease systematically with paragenetic time from calculated ${\delta}^{34}S_{H_2S}$ values of 8.2 to 4.7‰. These values, together with the observed change from sulfide-only to sulfide-hematite assemblages and fluid inclusion data, suggest progressively more oxidizing conditions, with a corresponding increase of the $sulfate/H_2S$ ratio of hydrothermal fluids. Measured and calculated hydrogen and oxygen isotope valutls of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values.

  • PDF

Lead-Zinc-Tin-Silver Mineralization of Tangguanpu Mine, Hunan Province, China: Fluid Inclusion and Sulfur Isotope Studies (중국 호남성 당관포 광산의 연-아연-주석-은 광화작용: 유체포유물 및 황동위원소 연구)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2001
  • Numerous base-metal bearing hydrothermal quartz vein deposits occur in the Hunan province of southern China. The Tangguanpu lead-zinc-tin-silver mine is the major producer among these deposits. Lead-zinc-tin-silver mineralization occurs in a single stage of massive quartz veins which filled fractures in fault zones within Paleozoic metasedimentary rocks. Sphalerite, chalcopyrite, galena, pyrite, arsenopyrite and pyrrhotite are the principal sulphide minerals in the Tangguanpu lead-zinc ores with minor amounts of tin- and antimony-bearing sulphides (stannite, teallite, boulangerite and tetrahedrite). Based on the iron and zinc partitioning between coexisting stannite and sphalerite, the formation temperature for this mineral assemblage range from 300$^{\circ}$ to 330$^{\circ}$C, which relatively agree with the upper part of homogenization temperature of fluid inclusion in quartz (20T-358$^{\circ}$C). Fluid inclusion data show that main lead-zine-tin-silver mineralization occurred from $H_{2}O$-NaCl fluids with relatively low salinities (11.2-7.3 wl.% eg. NaCI) at temperatures between 207$^{\circ}$ and 358$^{\circ}$C. The relationship between homogenization temperature and salinity suggests a history of cooling and dilution followed by initial boiling. Evidence of initial fluid boiling may indicate the fluid trapping pressures of 180 bars. The ${\delta}^{34}S{{\Sigma}S}$ values of -5.0 to 1.1 %, indicate an igneous source of sulfur in the Tangguanpu lead-zinc-tin-silver hydrothermal fluids.

  • PDF

Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit (우석광상 다금속 광화작용의 시공간적 특성변화)

  • Im, Heonkyung;Shin, Dongbok;Jeong, Junyeong;Lee, Moontaek
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.493-507
    • /
    • 2018
  • The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru (페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul;Acosta, Jorge
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

Potential Study for the Sedimentary Exhalative Pb-Zn Mineralization in Dyusembay Area, Kazakhstan (카자흐스탄 듀셈바이지역의 퇴적분기형 연-아연 광화작용에 대한 잠재력 연구)

  • No, Sang-gun;Lee, Seung-han;Park, Ki-woong;Jeong, Hyeon-guk;Yun, Ji-seong;Kim, Sun-ok;Park, Maeng-eon
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • Metasediment-hosted Pb-Zn mineralized zone has been found in Dyusembay of Kazakhstan. Its petrological properties, metal index, alteration index and redox-sensitivity are compared with those of SEDEX type deposit. Mineralization is developed along foliation of host rock (graphitic phyllite) and controlled by folds and faults; major ore minerals including pyrite, pyrrhotite, sphalerite, and galena are disseminated or interlayered with fine-grained quartz. The margin of the mineralized zone is metamorphosed accompanying sericite and chlorite. Hydrothermal brecciation and Pb-Zn mineralization formed in quartz-calcite stockworks are confirmed at the around of Maytyubin granitoid intrusions. The mineralization is classified into three types according to those of occurrence, paragenesis, chemical composition and isotopic characteristics. Type 1 whose fine-grained pyrite, pyrrhotite and sphalerite are formed in parallel yet discontinuous to well-developed foliations of the host rock; its geochemistry is similar to those of the earlier stage in SEDEX-type mineralization. In case of type 2, the ore minerals of which are concentrated being parallel to a foliation by regional metamorphism, and most of them associated with quartz and muscovite (${\pm}$ biotite) paragenetically. Type 3 is formed in the hydrothermal breccia zone whose ore minerals are controlled by foliation and breccia and developed in quartz ${\pm}$ calcite veins having a form such as stratification, stockwork or veinlets. Host rocks in the mineralized zone indicate homogeneous metamorphic grade and there is no specific alteration zonation. Also, all types (type 1, type 2, and type 3) represent similar REEs patterns, it can be interpreted that these are originated from a same source. Sulphides occurred in mineralized zone indicate a limited range of sulphur isotope values (type 2, ${\delta}^{34}S=-13.3{\sim}-11.7$‰; type 3, ${\delta}^{34}S=-13.9{\sim}-8.2$‰), and a result of geothermometry presents different temperature ranges: type 2($251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$); type 3($360{\pm}2^{\circ}C$ to $537{\pm}29^{\circ}C$). It is estimated to be due to the effect of metamorphism and Maytyubin granitoid intrusions, respectively. In addition, ternary chart of thorium, scandium, and zircon for discrimination of tectonic setting and redox sensitivity using V/Mo values indicate that hydrothermal sediments put on reduction environment after precipitation, before being affected by metamorphism and intrusion activity. Geochemical data are plotted on a distal trend of SEDEX-type with discrimination plot using SEDEX index. As a result, petrological-geochemical properties demonstrate that Dyusembay Pb-Zn mineralized zone is comparable to distal-type of SEDEX deposit.

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF