DOI QR코드

DOI QR Code

페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru

  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources) ;
  • Acosta, Jorge (Instituto Geologico Minero y Metalurgico-INGEMMET)
  • 투고 : 2019.03.05
  • 심사 : 2019.03.26
  • 발행 : 2019.06.30

초록

Pallancata 은 광산은 페루 수도 리마로부터 남동방향 약 520 km 떨어진 Ayacucho region 내에 위치한다. 광산일대의 주변 지질은 대부분 신생대의 화산암류로 구성되며 일부 관입암류가 관찰되며 구성암류는 응회암, 안산암질 용암, 안산암질 응회암, 화산쇄설성 용암, 화산 쇄설암, 유문암 및 석영몬조라이트이다. 이 광산은 응회암내에 발달된 NW, NE 및 EW 방향의 구조대를 따라 충진한 100여개의 석영맥들로 구성된다. 이들 석영맥의 은 품위는 40~1,000 g/t, 맥폭은 0.1~25 m 정도이고 연장성은 최대 3,000 m 정도이다. 석영맥은 대상, 정공, 괴상, 각력상, crustiform, colloform 및 comb 조직 등이 관찰된다. 모암변질작용은 규화작용, 견운모화작용, 황철석화작용, 녹니석화작용 및 점토화작용 등이 관찰된다. 산출광물은 석영, 방해석, 옥수, 빙장석, 형석, 금홍석, 저어콘, 인회석, 철산화물, REE계 광물, 크롬산화물, Al-Si-O계 광물, 황철석, 섬아연석, 황동석, 방연석, 에렉트럼, proustite-pyrargyrite, pearceite-polybasite 및 acanthite 등이다. 이 광산의 광물공생군과 화학조성을 토대로 구한 은 광화작용의 생성온도와 황분압($f_{s2}$)은 각각 $118{\sim}222^{\circ}C$$10^{-20.8}{\sim}10^{-13.2}atm.$의 범위를 갖는다. 따라서 이 광산의 석영맥 조직, 산출광물, 화학조성 및 은 광화작용의 형성환경 등을 토대로, 이 광산의 은 광물들은 모암과의 반응에 의한 약산성화된 열수용액으로부터 순환천수의 혼입에 의한 냉각 및 비등에 의해 비교적 낮은 형성온도, 유황분압 및 산소분압하에서 침전되었으며 이 광산의 광상형은 전형적인 천열수 intermediate sulfidation형에 해당된다.

Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

키워드

참고문헌

  1. Acosta, J., Santisteban, A., Huanacuni, D., Valencia, M., Villarreal, E., Heo, C.H., Lee, B.H., and Nam, H.T. (2015) Silver in Peru: Present status and future challenge. Economic and Environmental Geology, 48, 169-175. https://doi.org/10.9719/EEG.2015.48.2.169
  2. Bindi, L., Evain, M., Spry, P.G., and Menchetti, S. (2007) The pearceite-polybasite group of minerals: Crystal chemistry and new nomenclature rules. American Mineralogist, 92, 918-925. https://doi.org/10.2138/am.2007.2440
  3. Clark, A.H., Farrar, E., Kintak, D.J., Langridge, R.J., Arenas F., M.J., France, L.J., McBride, S.L., Woodman, P.L., Wasteneys, H.A., Sandeman, H.A., and Archibald, D.A. (1990) Geologic and geochronologic constraints on the metallogenic evolution of the Andes of southeastern Peru. Economic Geology, 85, 1520-1583. https://doi.org/10.2113/gsecongeo.85.7.1520
  4. Condori, N.K. (2016) The Ag-Au Pallancata mine: A low-sulphidation epithermal system in southern Peru. Universidade Federal de Mato Grosso, 39p.
  5. Decou, A., Eynatten, H.V., Mamani, M., Sempere, T., and Worner, G. (2011) Cenozoic forearc basin sediments in Southern Peru (15-18$\circ$S): Stratigraphic and heavy mineral constraints for Eocene to Miocene evolution of the Central Andes. Sedimentary Geology, 237, 55-72. https://doi.org/10.1016/j.sedgeo.2011.02.004
  6. Einaudi, M.T., Hedenquist, J.W., and Inan, E.E. (2003) Sulfidation state of hydrothermal fluids: The porphyry-epithermal transition and beyond. In: Simmons, S.F., Graham, I.J. (Eds.), Volcanic, Geothermal and Ore-forming Fluids: Rulers and Witnesses of Processes within the Earth: Society of Economic Geologists and Geochemical Society. Special Publication, 10, 285-313pp.
  7. Gamarra-Urrunaga, J.E., Castroviejo, R., and Bernhardt, H.J. (2013) Preliminary mineralogy and ore petrology of the intermediate-sulfidation Pallancata deposit, Ayacucho, Peru. The Canadian Mineralogist, 51, 67-91. https://doi.org/10.3749/canmin.51.1.67
  8. Gupta, A. (2013) The 10 biggest silver mines in the world. https://www.mining-technology.com/features/feature-the-10-biggest-silver-mines-in-the-world/.
  9. Hall, H.T. (1967) The pearceite and polybasite series. American Mineralogist, 52, 1311-1321.
  10. Heald, P., Foley, N.K., and Hayba, D.O. (1987) Comparative anatomy of volcanic-hosted epithermal deposit: Acid-sulfate and adularia-sericite types. Economic Geology, 82, 1-26. https://doi.org/10.2113/gsecongeo.82.1.1
  11. Hedenquist, J.W., Arribas, A. and Gonzalez-Urien, E. (2000) Exploration for epithermal gold. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000. Reviews in Economic Geology, 13, 245-277.
  12. INGEMMET (2015) Metallogenetic study of Cu-Au mineralization in porphyry and epithermal belts of Apurimac: Southeast Peru, Exploration and potential evalution of overseas/North Korea/Arctic circle mineral resources, 624-788.
  13. Jovic, S.M., Guido, D.M., Ruiz, R., Paez, G.N., and Schalamuk, I.B. (2011) Indium distribution and correlations in polymetallic veins from Pingüino deposit, Deseado Massif, Patagonia, Argentina. Geochemistry: Exploration, Environment, Analysis, 11, 107-115. https://doi.org/10.1144/1467-7873/09-IAGS-013
  14. Kubo, T., Nakato, T., and Uchida, E. (1992) An experimental study on partitioning of Zn, Fe, Mn and Cd between sphalerite and aqueous chloride solution. Mining Geology, 42, 301-309.
  15. Lee, H.K., Yoo, B.C., and Kim, S.J. (1992) Mineralogy and ore geneses of the Daebong gold-silver deposits, Chungnam, Korea. Journal of the Korean Institute of Mining Geology, 25, 297-316.
  16. Margirier, A., Audin, L., Carcaillet, J., Schwartz, S., and Benavente, C. (2015) Tectonic and climatic controls on the Chuquibamba landslide (western Andes, southern Peru). Earth Surface Dynamics, 3, 281-289. https://doi.org/10.5194/esurf-3-281-2015
  17. McIntyre, N.S., Cabri, L.J., Chauvin, W.J., and Laflamme, J.H.G. (1984) Secondary ion mass spectrometric study of dissolved silver and indium in sulfide minerals. Scanning Electron Microscopy, 1984, III, 1139-1146.
  18. Park, H.I. and Hwang, J. (1992) Chemical compositions of tetrahedrite-series minerals from Eunchi and Jungbong silver deposits. Journal of the Geological Society of Korea, 28, 615-626.
  19. Schampera, U.S., and Herzig, P.M. (2002) Indium: Geology, Mineralogy, and Economics. Springer, 237p.
  20. Schwartz, M.O. (2000) Cadmium in zinc deposits: Economic geology of a polluting element. International Geology Review, 42, 445-469. https://doi.org/10.1080/00206810009465091
  21. Shikazono, N., Nakata, M., and Shimizu, M. (1990) Geochemical, mineralogic and geologic characteristics of Se- and Te-bearing epithermal gold deposits in Japan. Mining Geology, 40, 337-352.
  22. USGS (2017) Mineral Commodity Summaries, 152-153.
  23. http://geology.com.