• 제목/요약/키워드: Pyramid pattern

검색결과 52건 처리시간 0.026초

IC핀 조사를 위한 시각 조사 방법 (Visual Inspection Method by Pyramid Data Structure)

  • 최성진;조동래;김영해;나극환;김춘길
    • 한국통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.374-383
    • /
    • 1990
  • 시각조사의 일은 대부분 숙련된 조사자에 의해 이루어지므로 시간이 경과 할수록 조사의 질은 감소한다. 그러므로 조사과정의 자동화가 요구되고 있으며, 실용적인 시각조사시스템을 위해서는 실시간에서의 데이터 처리능력, 다양한 입력물체에 대한 유연성 및 저렴한 시설비가 요구된다. 본 논문에서는 이러한 요구에 적합한 조사방법을 제안한다. 기존의 하드웨어 방식과는 달리 소프트웨어에 의해 조사데이터를 처리함으로써 조사시스템을 유연성 있게 하기 위하여 피라미드 데이터구조를 이용한 divide-and-conquer 기술과 간소화된 패턴 매칭방법을 결합한 시각조사 알고리즘을 제시한다. 이 방법에 의해 비교되는 패턴의 데이터 수를 감소시킬 수 있었고, 그 결과 조사속도를 줄일 수 있었다.

  • PDF

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Pattern Recognition with Rotation Invariant Multiresolution Features

  • Rodtook, S.;Makhanov, S.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1057-1060
    • /
    • 2004
  • We propose new rotation moment invariants based on multiresolution filter bank techniques. The multiresolution pyramid motivates our simple but efficient feature selection procedure based on the fuzzy C-mean clustering, combined with the Mahalanobis distance. The procedure verifies an impact of random noise as well as an interesting and less known impact of noise due to spatial transformations. The recognition accuracy of the proposed techniques has been tested with the preceding moment invariants as well as with some wavelet based schemes. The numerical experiments, with more than 30,000 images, demonstrate a tangible accuracy increase of about 3% for low noise, 8% for the average noise and 15% for high level noise.

  • PDF

Optimization of Ultrathin Backlight Unit by Using a Tapered Light Guide Film Studied by Optical Simulation

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.101-106
    • /
    • 2017
  • Optical structures of a tapered ultra-thin light guide film (LGF) were optimized by optical simulation for increasing coupling efficiency between light sources and the LGF. A serration pattern on the entrance side surface could provide a comparable coupling efficiency to that of the conventional LGF where a linear, asymmetric prism array was formed on the taper surface. Several micro-patterns were applied to the top and/or bottom surface of the LGF for achieving better luminance property, and it was found that an optimized micro-pyramid pattern exhibited the highest average luminance together with satisfactory luminance uniformity.

전탐색 회피에 의한 고속 에지기반 점 상관 알고리즘의 개발 (Development of an Edge-based Point Correlation Algorithm Avoiding Full Point Search in Visual Inspection System)

  • 강동중;김문조;김민성;이응주
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.327-336
    • /
    • 2004
  • 일반적인 공장환경에서 적용할 수 있는 비젼 검사시스템의 개발을 위해서는 안정적이면서도 고속 패턴정합을 수행하는 알고리즘의 개발이 필요하다. 본 논문에서는 전탐색 회피기법을 이용하는 자동화용 패턴검사를 위한 에지 기반의 점상관 고속 알고리즘을 제안한다. 이 알고리즘은 탐색할 영상의 에지특성을 분석함에 의해 전탐색을 회피함으로써 탐색복잡도를 크게 개선한다. 농담정규화정합(NGC)법을 사용하는 통상적인 검사 알고리즘은 공장환경에 적용할 매 몇가지 문제점을 극복해야 한다. 첫 번째는 과도한 계산량으로 고속동작을 가능하게 하기 위해 특별한 알고리즘의 설계가 필요하며 고속 하드웨어의 사용을 요구한다 두 번째는 불안정한 조명조건 하에서도 신뢰성 있는 검사결과를 주어야 한다는 것이다. 전통적인 NGC 알고리즘은 조명의 불안정에 따라 검사결과가 크게 변동하는 특성을 가지고 있다. 본 논문에서는 이러한 단점을 극복하기 위해 에지 기반의 점상관 알고리즘을 제안한다. 계산량을 개선하기 위해 전탐색 회피 알고리즘을 개발하여 적용하고, 에지 피라미드 구조를 탐색에 T입하여 실시간에 근접하는 시간 복잡도를 달성한다. 제안된 방법들은 실제 영상에 적용하여 신뢰성을 검증한다

양극산화된 알루미늄과 마이크로 인덴데이션을 이용한 3차원 마이크로-나노 하이브리드 패턴 제작 (Development of 3D Micro-Nano Hybrid Patterns Using Anodized Aluminum and Micro-Indentation)

  • 권종태;신홍규;김병희;서영호
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1139-1143
    • /
    • 2007
  • A simple method for the fabrication of 3D micro-nano hybrid patterns was presented. In conventional fabrication methods of the micro-nano hybrid patterns, micro-patterns were firstly fabricated and then nano-patterns were formatted on the micro-patterns. Moreover, these micro-nano hybrid patterns could be fabricated on the flat substrate. In this paper, we suggested the fabrication method of 3D micro-nano hybrid patterns using micro-indentation on the anodized aluminum substrate. Since diameter of the hemispherical nano-pattern can be controlled by electrolyte and applied voltage in the anodizing process, we can easily fabricated nano-patterns of diameter of loom to 300nm. Nano-patterns were firstly formatted on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns of diameter of 150nm were fabricated by anodizing process, and then micro-pyramid patterns of the side-length of $50{\mu}m$ were formatted on the nano-patterns using micro-indentation. Finally we successfully replicated 3D micro-nano hybrid patterns by hot-embossing process. 3D micro-nano hybrid patterns can be applied to nano-photonic device and nano-biochip application.

레이저 재료 가공을 위한 광폭빔 광학 장치 (Wide Beam Optical System for the Laser Materials Processing)

  • 김재도;조응산;전병철
    • 한국레이저가공학회지
    • /
    • 제1권1호
    • /
    • pp.24-29
    • /
    • 1998
  • A new wide laser beam optical system for the laser materials processing has been developed with a polygonal mirror. It consists of polygonal mirror and cooling part that prevents the surface of rotating polygonal mirror from damage by heat. The polygonal minors have been designed and made as 24 and 30 facets in pyramid type. This system provides a uniform linear laser heat source with the surface scanning width from 15 to 50mm according to the scanning height To examine the wide laser beam, He-Ne laser is used. Also, Acryl is used to confirm the laser beam pattern by bum-pattern print To analyze the energy distribution of the wide laser ben empirical values and theoretical values are compared and discussed. To improve the efficiency of the wide laser beam optical system, methods are suggested by the optical theories. For larger area processing like turbine blade, drawing blade, cold roller and guide plate, optimal overlapping locations have been calculated and analyzed by geometric and optical theories.

  • PDF

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

ISB 판넬의 굽힘강성 및 파손특성에 관한 연구 (Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

타원궤적 진동절삭 가공기를 이용한 미세 형상 가공 (Machining of Micro Structure using Elliptical Vibration Grooving Machine)

  • 김기대;노병국
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.45-51
    • /
    • 2008
  • Successive micro-scale V-grooves and a grid of pyramids were machined by elliptical vibration tufting (EVC) to investigate feasibility of using EVC as an alternative method of creating micro-molds to photo-lithography and electroforming, which have been commonly employed. An elliptical vibration grooving machine was developed which consists of two orthogonally-arranged piezoelectric actuators, a diamond cutting tool, and a motorized xyz stage. The micro-scale features were machined on materials of copper, duralumin, nickel, and hastelloy and it was found that EVC significantly reduces cutting resistance and prohibits generation of side burrs and rollover burrs, thus resulting in improving machining qualify of micro-molds in ail experimented workpiece materials.