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1. INTRODUCTION 

The first region based moment invariants introduced by Hu 

[1],[2] are projections of the image onto the monomial 

functions. The moments are believed to be reliable for 

complex shapes because they involve not solely the contour 

pixels but all the pixels constituting the object. However, a 

dramatic increase in complexity associated with the relevant 

projections makes Hu's moments impractical. Besides, the 

redundancy of Hu's moments noticed in [2] has clearly 

indicated a need for further research. Shortly after Hu's paper, 

a variety of invariant moments has been proposed and 

analyzed [2]-[8]. The major developments are characterized 

by the Legendre moments [1],[2], the Zernike moments [2],[3], 

the Fourier-Mellin moments [2], the Complex moments [2],[4] 

and the Tchebichef moments [5]. Finally, Shen [6] introduced 

a rotationally invariant moment representing the image by 

projections onto wavelets. It has been demonstrated that such 

wavelet invariants may ensure a higher classification rate.  

Multiresolution pyramid is a very well-known procedure. 

However, to the best of our knowledge, it has not been applied 

to construct rotation moment invariants. Therefore, we 

propose to develop the idea of the wavelet-based moments by 

introducing the filter bank representation and by analyzing its 

performance. Since the Mallat-like expansion is always 

overcomplete, the features are selected by the Fuzzy C-mean 

(FCM) clustering endowed with the Mahalanobis distance and 

elimination of redundant and noise sensitive features. The 

objects are represented by the FCM clusters. A minimum of 

the FCM cost function corresponds to a better discriminative 

set. Even in the absence of noise induced by physical devices 

there always exists a noise due to finite resolution of the image 

subjected to the spatial transformations [7]. The moment 

invariants should be evaluated by the response not only to 

random high frequency noise but also to low frequency noise 

of the rotations and scaling [7]. 

Recognition rate of the algorithm has been tested by 30,000 

different images and compared with the Zernike moments, the 

Fourier-Mellin moments as well as with a wavelet based 

representation proposed by Shen [6]. Our proposed techniques 

provide a significant accuracy increase ranging from 3% to 

15%. 

2. ROTATIONALLY INVARIANT MOMENTS 

A general moment M  of a function ( , )f r  with 

respect to a moment function ( , )F r  in the polar coordinate 

system with the origin at the centroid of the object is defined 
2 1

0 0

( , ) ( , )M f r F r rdrd

We assume that ( , ) ( ) ( )F r R r G , where ( )R r denotes a 

basis function such as the Zernike polynomial, and ( )G  an 

angular function. Taking ( ) ( ) iG G e  for some

provides the rotational invariance. Note that if  is 

considered as a continuous variable the integral with regard to 

 is nothing else that the circular Fourier transforms. 

Usually (but not necessarily), in the theory of rotational 

invariant moments,  is an integer [6] called the angular 

order. We represent the above integral by 

1

0

( ) ( )M R r S r rdr

where 

2

0

( ) ( , ) ( )S r f r G d .

Note that if M  is a moment of the rotated 

image ( , )f r , where  is the angle of rotation, then 
iM e M . Therefore, M M . Thus, rotation of the 

object affects the phase but not the magnitude. Furthermore, 
from the viewpoint of functional analysis, each object is 
represented by an infinite and unique set of the invariants if 
functions ( )R r  constitute a basis in the appropriate 
functional space. 

A wavelet basis has a number of advantages since it could 

be adapted to the spectrum as well as to the spatial properties 

of a particular set of objects. In [6] the set of the radial 

functions is given by ,( ) ( ) (1 ) * ( )m nR r r m r n m ,

where ( )r  is the mother wavelet, m the dilation parameter 

(the scale index) and n the shifting parameter. 

We call projections of ( )S r r  onto , ( )m nR r  the 

wavelet moments and denote them by 
, ,m nM . From the point 

of view of multiresolution analysis, such projections 

correspond to the "details" associated with the high frequency 

part of the object shape which are usually sensitive to noise. 

3. FILTER BANK MOMENT INVARIANTS 
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In this section we introduce new moment invariants based 

on the filter bank. In the case of discrete orthogonal wavelets 

the low-resolution coefficients may be calculated from higher 

resolution coefficients by a scheme called the filter blank. The 

QMF is a fast algorithm first proposed by Mallat [8] and 

extended to the biorthogonal by Unser et al [9]. The 

approximation and the detail wavelet moments are constructed 

as follows 

, , 2 1, ,m n n q m q

q

A H A

, , 2 1, ,m n n q m q

q

D G A

0 01, 2,...,0m V V , where V0-1 is the finest resolution 

level. ,H G  are the so-called finite impulse response filters 

[8], , ,0
( )V n n nA S r r ,

1
, 1,2,...,nr n n K

K
. It is not hard 

to demonstrate that , ,m nA  and , ,m nD  are rotation 

invariants for any .

4. SELECTING THE FILTER BANK INVARIANTS 

Selection of features [10] is a crucial step for any shape 

recognition system. The mutliresolution moment invariants 

imply that for dissimilar objects the features should be taken 

mostly from the approximation coefficients; however, for 

similar objects one should employ the details. In order to find 

the best combination of the approximation and the detail 

coefficients we first, we examine the features individually and 

discard those with a low discriminatory capability. Further 

selection is done by analyzing combinations of the features. 

The entire feature selection procedure is given below. 

1. Discard the noise-sensitive angular orders by 

considering the least square error type given by 

2
, ,

1 1 1

( ) ( )

( )

I J K
i Template i j

k k

i j k

S r S r

error
I J K

where I is the number of classes, J the number of objects in 

each class and ,( )i Template
kS r  the circular Fourier transform 

of the template associated with class i. The resulting set 

1 2* , , , L  is fed to the next step of the procedure. 

2. For each implement the QMF scheme as illustrated 

below 

Fig. 1 Pyramidal filter bank moment invariants.

3. Reduce the dimension of the feature space by analyzing 

the features individually. We threshold the features using a 

statistical testing ANOVA [11]. We use a one-way ANOVA 

with a randomized complete block design to verify the 

assumption 1 2 i I , where i  is the 

mean-feature of class i.

Fig 2 Analysis of the individual filter bank moment 

invariants. 

4. Analyze combinations of the features. At this stage the 
multiresolution analysis is combined with the FCM technique 

[12]. First of all, the features must be normalized [13] 

otherwise the FCM cost function could be larger for a better 

feature set. We consider all possible combinations of the 

features ,a i
M at scale a; then , , ,1 2

{ , ,..., }a a a a L
F M M M .

Next, we consider combinations of the features selected from 

the scales a, b, c, d, e… as follows 

1 2
{{ } ,{ } ,...,{ } }ab a b a b a b L

F M M M M M M

1 2
{{ } ,{ } ,...,{ } }abc a b c a b c a b c L

F M M M M M M M M M

1
{{ } ,...,{ } }abcd a b c d a b c d L

F M M M M M M M M

1
{{ } ,...,{ } }abcde a b c d e a b c d e L

F M M M M M M M M M M

…, etc 

The discriminatory capability of a set is evaluated by 

minimizing the FCM cost function. A minimum of the 

function corresponds to a better set. As mentioned before, 

the filter bank moment invariants are redundant and correlated, 

therefore, the FCM algorithm involves the Mahalanobis 

distance [14]. It also provides better separability. Consider 

scattergrams 3,13,1 3,14,1A A  associated with two similar 

aircrafts Alpha Jet and Am-X and 2,10,1 2,11,1A A  associated 

with two upper case English letters “O” and “Q” (Fig 3 (a) and 

3(b) respectively). The training classes form an elliptical shape. 

The circles representing the classes in terms of the Euclidean 
distance overlap (see Fig 3). However, the two ellipses 

representing the Mahalanobis distance are separable. 

Moreover, even if the sets are separable in the both metric, the 

Mahalanobis metric usually requires less FCM iterations (see 

Fig 4 (a) and (b)). 

Finally, once an appropriate feature set has been selected, 

the classification templates are automatically found as the 

centroids of the FCM clusters.

(a). 
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(b).

Fig 3. Scattergrams of Alpha Jet and Am-X and the 

characters O and Q corrupted by 0-2% impulse nose, (a). 

Aircrafts. (b). Characters. 

(a)

(b). 

Fig. 4. Convergence of the FCM cost function, two 

rotated/scaled objects corrupted by 0-2% impulse noise, (a). 

Aircrafts: 3,13,1 3,14,1,F A A , (b). Characters O and Q,

2,10,1 2,11,1,F A A

5. EXPERIMENTAL RESULTS 

We evaluate performance of the proposed algorithm by two 
datasets. The first data consists of 37,500 noisy images [15] 

based on fifteen basic aircraft silhouettes: Alpha Jet, Am_x, 

Jaguar, Hawk, An-12 Cub, An-24 Coke, An-32 Cline, C-130 

Provider, C-137 Hercules, G-222, MB-326, MB-339A, 

Mig-29, MiG-17 and Jastreb. Each silhouette produces 1600 
training images and 900 testing images. Our second dataset 

based on online database NIST [16], consists of 

machine-printed characters, 9000 upper case English letters 

(Bold, Courier). We use 5800 letters for training and 3200 for 

testing.  The both datasets are degraded by an impulse noise 

varying from 1 to 8% and the transformation noise. We 

perform the experiments by the filter blank moment invariants 

obtained by means of the cubic B-splines. The orthogonal 

Daubiech wavelets of order 2, 4 and 6 and the Coiflet wavelets 

were tested as well. Although the orthogonal wavelets easily 

allow to reconstruct the image, the B-splines are always 

performing slightly better. We also analyzed the wavelet 

moment invariants introduced by Shen [6]. As mentioned 

before, the Shen’s invariants obtained by projecting , ( )m n r

onto ( )S r r  correspond to , ,m nD .

Denote our proposed algorithm by QMF-FCM-M in the 

case of the Mahalanobis distance and by QMF-FCM-E in the 

case of the Euclidean distance. We use the notation “FCM” to 
indicate our feature selection algorithm and the notation “I” if 

the features were selected individually by mean of Shen’s 

algorithms (see for instance [6]). For example, “Shen-I-E", 

means "the Shen's invariants with individual selection in terms 

of the Euclidean distance". 

The comparison of an average classification rate of the 

proposed QMF-FCM-M versus the most popular moment 

invariants is shown in Table 1. Table 1 includes degradation 

by all types of noise, rotation, translation, scaling and random 

noise. Besides, in the case of NIST we consider an interesting 

effect of the boundary noise appearing after separation of 

touching letters by means of dilation.  Consider Tables 1. 

Shen-I-E applied to the NIST symbols has 88.4% average 

recognition rate, whereas our method provides 94%. The table 

shows that every component of the algorithm is almost equally 

important. Namely, combining the QMF with the FCM shows 
a 1.5% increase whereas the Mahalanobis distance increases 

the recognition rate further by 2%. Differentiation by the 

intensity and the type of noise given in Tables 2-5 reveals that 

our algorithm almost always overperforms Shen's invariants 

especially when they are based on the individual feature 
selection and the Euclidean distance. The efficiency of the 

algorithm with the reference to the preceding techniques 

becomes apparent when increasing the noise intensity. The 

most impressive result is an almost 28 % absolute increase 

(45% relative increase) with regard the Fourier Mellin (FM) 

invariants in the case of the aircraft silhouettes degraded by  

6-8% impulse noise and the rotation noise. Tables 4 and 5 

exemplify the experiments with the NIST printed characters. 

Note that the rotation and segmentation noise display much 

more significant impact on the characters since the centroids 

of the characters often lie outside the character body. 

Consequently, the centroids are much more sensitive to the 

noise. 

Table 1. Average classification rates. 

Classification rates 

Algorithm   Aircraft 

silhouettes 

Upper case 

characters 

QMF-FCM-M 

QMF-FCM-E 

92.8 % 

  89.4% 

94% 

90.9% 

Shen- FCM-M  
Shen-FCM-E 

91.2 % 
86.9%

92.6% 
89% 

Shen -I –E 

Zernike -I– E 

FM- I –E 

84.7%

82.8%

77.1%

88.4 % 

86.1 % 

80.3

Table 2. Aircraft images, impulse noise. 

Impulse noise  

ratio %

0 2

%

2 4

%

4 6

%

6 8

%

QMF-FCM-M 98.7 93.9 86.2 67.3 

Shen- FCM-M 98.1 92.0 82.7 61.9 

Shen- I-E 96.4 86.2 73.3 53.8 

Zernike -I– E 95.9 85.1 71.8 51.6 

FM- I –E 90.7 78.7 59.5 43.7 
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Table 3. Aircraft images, impulse noise combined with 

rotation and scaling. 

Impulse noise  

ratio %

0 2

%

2 4

%

4 6

%

6 8

%

QMF-FCM-M   96.3   91.6 82.3 62.6 

Shen- FCM-M   95.4   90.3 78.4 55.0 

Shen- I-E   93.1   82.7 65.6 45.3 

Zernike -I– E   91.8   80.9 62.9 41.9 

FM- I –E   87.3   71.9 47.1 34.5 

Table 4. The NIST characters, impulse noise and 

segmentation noise. 

Impulse noise  

ratio %

0 1.5

%

1.5 3

%

3 4.5

%

4.5 6

%

QMF-FCM-M   99.7   94.3 88.3 72.9 

Shen- FCM-M   99.2   92.4 85.6 68.8 

Shen- I-E   97.7   89.6 80.8 61.4 

Zernike -I– E   96.9   88.3 78.4 58.6 

FM- I –E   94.8   82.1 70.1 49.8 

Table 5. The NIST characters, impulse noise and 

transformation noise. 

Impulse noise  

ratio %

0 1.5

%

1.5 3

%

3 4.5

%

4.5 6

%

QMF-FCM-M   97.3   93.6 85.3 67.5 

Shen- FCM-M   96.6   91.2 81.9 60.1 

Shen- I-E   94.7   86.1 72.8 51.5 

Zernike -I– E   92.6   83.9 68.3 46.7 

FM- I –E   89.3   77.4 61.2 37.8 

6. CONCLUSIONS 

The proposed filter bank invariants extend the idea of 

applying wavelets for rotation invariant pattern recognition. 

Our approach based on the analysis of the high and the low 

frequency filter bank coefficients combined with elimination 
of the redundant features always leads to a tangible 

improvement of the recognition rate with the reference to the 

conventional methods. For instance, on average we obtain an 

increase of about 3% for low noise, 8% for an average noise 

and 15% for high level noise. A large number of testing 
images and the variety of the sources of the noise makes it 

possible to conjecture that the proposed technique performs 

better than the existing ones for other applications. 
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