• Title/Summary/Keyword: PyC

Search Result 151, Processing Time 0.025 seconds

The Secretion Optimization of Oligopeptide with His-Pro Repeats in Bacillus subtilis and Its Anti-Diabetic Effects (고초균에서 His-Pro 반복서열을 갖는 Oligopeptide의 분비 최적화 및 항당뇨 효과)

  • Jeong, Seon Hwa;Choi, Jang Won
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.71-82
    • /
    • 2017
  • To verify anti-diabetic effect of oligopeptide with His-Pro repeats (mHP peptide), the oligopeptide was first secreted and optimized using the secretion vector, pRBAS with alkaline protease gene promoter and the signal sequence in Bacillus subtilis and directly the anti-diabetic effect of the mHP peptide was investigated in insulinoma cell, RINm5F cell line. The oligopeptide gene was obtained by annealing oligonucleotides with repeated His-Pro sequence and finally was constructed as 18 dipeptides (108 bp and 4.0 kDa) coding gene, named oligopeptide with His-Pro repeats (mHP peptide) to make cyclo(His-Pro) known to be anti-diabetic effects. The region encoding the oligopeptide gene was subcloned into the pRBAS secretion vector (E.coli-Bacillus shuttle vector) after PCR amplification using the designed primers including initiation and termination codons and His tag, named pRBAS-mHP (6.56 kb). To optimize secretion of the oligopeptide, various culture conditions were investigated in Bacillus subtilis LKS. As a result, the secreted oligopeptide was maximally measured (approximately $59.6{\mu}g/mL$) in 3 L batch culture and the highest secretion was achieved at $30^{\circ}C$, PY medium, and carbon sources (particularly barley and glycerol). In the RINm5F cells treated with 2 mM STZ, the oligopeptide treatment (0.1 mg/mL) restored the cell viability (10%) and reduced the nitric oxide (NO) generation (35%) and DNA fragmentation (90%). And also, insulin secretion level was increased to 17% higher than in STZ-treated RINm5F cells. These results suggest that the oligopeptide with His-Pro repeats could be a candidate material for anti-diabetic agent against STZ-induced diabetes.

Identification of the Antibiotic-Producing Chstridium sp. KH-431 and Purification of the Antibiotics (항생물질을 생산하는 Clostridium sp. KH-431의 동정 및 항생물질의 정제)

  • 홍수형;김미정;박용복;이재근;하지홍
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.41-46
    • /
    • 1993
  • A strain showing antibiotic activities against various bacteria and fungi was selected from approximately 2,000 microorganisms obtained from soil samples. This strain, designated as KH-431, was identified as a Clostridium sp. by its morphological, physiological and biochemical characteristics. The highest production of the antibiotics was achieved in a fermentation medium containing sorbitol, yeast extract, d-biotin and $CaCl_2$ The antibiotics were isolated from the culture broth by solvent extraction using ethyl acetate, silica gel column chromatography and recrystallization. Two kinds of antibiotics, KG-431A and KG-431B were obtained after the purification procedure, and only KG-431B was successful to recrystallize.

  • PDF

Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials (통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성)

  • Woo, Kee Do;Kang, Duck Soo;Kwon, Eui Pyo;Moon, Min Seok;Shon, In Jin;Liu, Zhiguang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.508-515
    • /
    • 2009
  • Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.

Scaling Up Fabrication of UO2 Porous Pellet With a Simulated Spent Fuel Composition (모의 사용후핵연료 조성의 UO2 다공성펠렛 제조 스케일 업)

  • Jeon, Sang-Chae;Lee, Jae-Won;Yoon, Joo-Young;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.343-353
    • /
    • 2017
  • Processing and equipment were tailored for engineering scale fabrication of $UO_2$ porous pellets, a feed material for the electrolytic reduction process in the PRIDE (PyRoprocessing Integrated DEmonstration) facility at KAERI (Korea Atomic Energy Research Institute). The starting materials, $UO_2$ powder and pre-milled surrogate oxide powders, were proportioned to simulate the chemical composition of spent fuel (so-called Simfuel). The Simfuel powders were homogenized by mixing, compacted into a pellet shape, and finally heat treated using a tumbling mixer, rotary press, and sintering furnace. After sintering at $1450^{\circ}C$ for 24 h in $4%\;H_2-Ar$, the average bulk density of the $UO_2$ Simfuel pellets was $6.89g{\cdot}cm^{-3}$, which meets the standard of the following electrolytic reduction process. In addition, the results of a microstructural analysis demonstrated that the sintered Simfuel $UO_2$ porous pellets accurately simulate the properties of spent fuel in terms of the formation of second phases. These results provide essential information for the massive fabrication of $UO_2$ porous pellets for engineering scale pyroprocessing research.

Characterization of Poly(methyl methacrylate)-tin (IV) Chloride Blend by TG-DTG-DTA, IR and Pyrolysis-GC-MS Techniques

  • Arshad, Muhammad;Masud, Khalid;Arif, Muhammad;Rehman, Saeed-Ur;Saeed, Aamer;Zaidi, Jamshed Hussain
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3295-3305
    • /
    • 2011
  • Thermal behavior of poly (methyl methacrylate) was analyzed in the presence of tin (IV) chloride. Five different proportions - polymer to additive - were selected for casting films from common solvent. TG, DTG and DTA were employed to monitor thermal degradation of the systems. IR and py-GC-MS helped identify the decomposition products. The blends start degrading at a temperature lower than that of the neat polymer and higher than that of the pure additive. Complex formation between tin of additive and carbonyl oxygen (pendent groups of MMA units) was noticed in the films soon after the mixing of the components in the blends. The samples were also heated at three different temperatures to determine the composition of residues left after the expulsion of volatiles. The polymer, blends and additive exhibited a one step, two-step and three-step degradation, respectively. $T_0$ is highest for the polymer, lowest for the additive and is either $60^{\circ}C$ or $70^{\circ}C$ for the blends. The amount of residue increases down the series [moving from blend-1 (minimum additive concentration) to blend-5 (maximum additive concentration)]. For blend-1, it is 7% of the original mass whereas it is 16% for blend-5. $T_{max}$ also goes up as the concentration of additive in the blends is elevated. The complexation appears to be the cause of observed stabilization. Some new products of degradation were noted apart from those reported earlier. These included methanol, isobutyric acid, acid chloride, etc. Molecular-level mixing of the constituents and "positioning effect" of the additive may have brought about the formation of new compounds. Routes are proposed for the appearance of these substances. Horizontal burning tests were also conducted on polymer and blends and the results are discussed. Activation energies and reaction orders were calculated. Activation energy is highest for the polymer, i.e., 138.9 Kcal/mol while the range for blends is from 51 to 39 Kcal/mol. Stability zones are highlighted for the blends. The interaction between the blended parts seems to be chemical in nature.

Activation of Phospholipase Cγ by Nitric Oxide in Choriocarcinoma Cell Line, BeWo Cells (Choriocarcinoma 세포주 BeWo 세포에서 nitric oxide에 의한 phospholipase Cγ 의 활성)

  • 차문석;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.849-855
    • /
    • 2003
  • Nitric oxide (NO) plays an important role as a signaling molecule in the proliferation of placenta trophoblasts. In this study, we investigated the effect of NO on the activation of phospholipase C (PLC) in BeWo cells, choriocar-cinoma cell line. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased $[^3H]$ thymidine incorporation of BeWo cells, indicating NO stimulates proliferation of the cells. NO-induced proliferation of BeWo cells was blocked by U73122, an inhibitor of PLC, suggesting that NO-induced PLC activation is involved in the cell proliferation. NO also stimulated extracellular signal-regulated kinase (ERK) in BeWo cells, indicated by increased phosphorylation of ERK1/2 in Western blotting using anti-phospho-ERK1/2 antibody. NO-induced phos-phorylation of ERK1/2 was not abrogated by U73122. $PLC\gamma_1$l but not$PLC\gamma_2$ was tyrosine phosphorylated by SNP in immunoprecipitation assay using anti-$PLC\gamma_1$/$PLC\gamma_2$ antibodies, and SNP-induced phosphorylation of $PLC\gamma_1$ was abrogated by pre-treatment of cells with genistein and PD98059, indicating that NO induced-phosphorylation of $PLC\gamma_1$ is mediated by ERK. These results suggest that NO stimulates the proliferation of BeWo cells through ERK and $PLC\gamma_1$.

Estimation of Genetic Parameter for Milk Production and Linear Type Traits in Holstein Dairy Cattle in Korea (국내 Holstein 젖소의 유생산 형질과 유방 및 지제 선형심사 형질에 대한 유전모수 추정)

  • Won, J.I.;Dang, C.K.;Lim, H.J.;Jung, Y.S.;Im, S.K.;Yoon, H.B.
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.167-178
    • /
    • 2016
  • This study was conducted to estimate genetic parameters for milk production and linear type traits in Holstein dairy cattle in Korea. The data including milk yields, fat yields, protein yields, fat percent, protein percent, somatic score and 15 linear type traits for 10,218 first parity cows collected by Dairy Cattle Improvement Center, National Agricultural Cooperative, Korea, which were calving from January 2009 to April 2013. Genetic and error (co)variances between two traits selected form 19 traits were estimated using bi-trait pairwise analyses with WOMBAT package. The estimated heritabilities for milk yield(MY), fat yield(FY), protein yield(PY), fat percent(FP), protein percent(PP), somatic cell score(SCS), udder depth(UD), udder texture(UT), median suspensory(MS), fore udder attachment(FUA), front teat placement (FTP), rear attachment height(RAH), rear attachment width(RAW), rear teat placement(RTP), front teat length(FTL), foot angle(FA), heel depth(HD), bone quality(BQ), rear legs side view(RLSV), rear legs rear view(RLRV) and locomotion(LC) were 0.128, 0.144, 0.100, 0.273, 0.333, 0.090, 0.179, 0.066, 0.104, 0.109, 0.127, 0.099, 0.059, 0.069, 0.154, 0.014, 0.010, 0.052, 0.065, 0.175 and 0.031, respectively. Among the genetic correlations, UD, UT, FTP, RAW, FTL, FA and RLSV with MY were -0.334, 0.271, 0.445, 0.544, 0.076, -0.281 and -0.228, respectively, and MS, FTP, RTP, FTL, FA, BQ, RLSV, RLRV and LC with PP were -0.147, -0.182, -0.262, -0.136, 0.355, 0.311, 0.135, 0.233 and 0.143, respectively. Especially, MY had the highest positive genetic correlation with RAW (0.544), while SCS had the highest negative genetic correlation with LC (-0.603). FP had negative genetic correlation with most udder traits, whereas, FP had positive genetic correlation with leg and hoof traits (0.056 - 0.355).

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Isolation and Identification of a Streptomyces sp. that Produces Antibiotics Against Multidrug - Resistant Acinetobacter baumannii (다제내성 Acinetobacter baumannii의 생장을 억제하는 항생물질을 생산하는 방선균의 분리.동정 및 항균효과)

  • Rhee, Ki-Hyeong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • I isolated the actinomycete strain KH223 from soil samples collected from the Kye Ryong mountain area. This strain is antagonistic to the multidrug-resistant Acinetobacter baumannii. KH223 was confirmed as belonging to the genus Streptomyces based on the scanning electronmicroscopy(SEM) observations of the diaminopimelicacid(DAP) type and morphological and physiological characteristics. Comparison of the 16S rDNA nucleotide sequences revealed that KH223 has a relationship with Streptomyces galbus. Production of antibiotics by KH223 was most favorable when cultured on a glucose, polypeptone, and yeast extract(PY) medium for 6 days at 27$^{\circ}C$. The supernatant was found to exhibit an antimicrobial effect on various kinds of bacteria and fungi. Particularly, butanol and ethylacetate extracts of KH223 and cyclo(trp-trp) exhibited significant activity against A. baumannii at concentration ranges of 0.8-12.5 ${\mu}g$/mL, 5.0-25 ${\mu}g$/mL and 12.5${\rightarrow}$100 ${\mu}g$/mL, respectively. Moreover, in contrast to cyclo(trp-trp) had shown to activity against Micrococcus luteus JCM 1464 at the concentration of 12.5 ${\mu}g$/mL, the butanol extract of KH223 showed significant activity against Bacillus subtilis IAM 1069 and Micrococcus luteus JCM 1464 at the concentration of 0.4 and 0.8 ${\mu}g$/mL, respectively. These results suggest that KH223 may have a great potential in the production of new antibiotics to combat multidrug-resistant pathogens and further studies may be warranted for the same.

A Study on the analysis method and composition characteristics of organic materials in the pottery excavated at the palace site in Yongjangseong Fortress, Jindo (진도 용장성 왕궁지 출토 도기호 내부 유기물의 분석법과 성분 특성 연구)

  • YUN Eunyoung;YU Jia;KIM Kyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.158-171
    • /
    • 2023
  • Pottery filled with organic materials was excavated from the G-2 building site of Yongjangseong Fortress, Jingo, a relic of the Goryeo Dynasty. In this study, the characteristics of organic material were confirmed by a scientific analysis of organic material in pottery found at the palace in Yongjangseong, Jindo. In addition, it was intended to review the analysis method to identify the natural resin and to secure characteristic components(biomarkers) for each natural resin and use them as basic data in the future. The organic materials in the pottery were analyzed using attenuated total reflectance Fourier-transformed infrared spectroscopy(ATR-FTIR) and gas chromatography mass spectrometry(GC-MS). The infrared spectral characteristics were estimated to be natural resin, and biomarkers of organic materials were identified as sesquiterpene-based compounds(C15H24, MW 204) and derivatives. The lacquer(T.vemicifluum) is composed mainly of alkenes, alkanes, and catechol. Pine resin(P.densiflora), on the other hand, is primarily composed of diterpenoid(abietic acid, pimaric acid) and Whangchil(yellow lacquer) is identified to have sesquiterpenes(such as selinene, muurolene, calamenene) as its main components. So, the organic material in the pottery can be identified as Whangchil by comparing their compounds with modern resin materials from Dendropanax. morbifera that correspond with the results. Whangchil, which is exuded from the Dendropanax. morbifera, has been used as a natural coating materials since ancient times, and it has been confirmed that the characteristic components are well preserved even 700 years later. It can be assumed that the interior Whangchil was stored not for use as a coating, but rather for ritual purposes when the building was constructed, because the pottery was found near the cornerstone. Furthermore, based on simplified sample preparation using pyrolysis-gas chromatography mass spectrometry(Py-GC-MS), the thermal decomposition products were found to be similar to the characteristic components, suggesting that this method can be applied to the identification of natural resins used in historic artifacts.