• Title/Summary/Keyword: Push-out test

Search Result 204, Processing Time 0.032 seconds

Shear behavior of multi-hole perfobond connectors in steel-concrete structure

  • Xing, Wei;Lin, Xiao;Shiling, Pei
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.983-1001
    • /
    • 2015
  • This study focuses on the load carrying capacity and the force transfer mechanism of multi-hole perfobond shear connectors in steel-concrete composite structure. The behavior of multi-hole perfobond shear connector is more complicated than single-hole connector cases. 2 groups push-out tests were conducted. Based on the test results, behavior of the connection was analyzed and the failure mechanism was identified. Simplified iterative method and analytic solution were proposed based on force equilibrium for analyzing multi-hole perfobond shear connector performance. Finally, the sensitivity of design parameters of multi-hole perfobond shear connector was investigated. The results of this research showed that shear force distribution curve of multi-hole perfobond shear connector is near catenary. Shear forces distribution were determined by stiffness ratio of steel to concrete member, stiffness ratio of shear connector to steel member, and number of row. Efficiency coefficient was proposed to should be taking into account in different limit state.

Shear behavior and analytical model of perfobond connectors

  • Zheng, Shuangjie;Liu, Yuqing;Yoda, Teruhiko;Lin, Weiwei
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.71-89
    • /
    • 2016
  • In steel and concrete composite girders, the load transfer between the steel beam and the concrete slab is commonly ensured by installing shear connectors. In this paper, to investigate the nonlinear behavior of perfobond connectors, a total of 60 push-out specimens were fabricated and tested with the variables for the hole diameter, the concrete strength, the thickness of concrete slab, the diameter, strength and existence of perforating rebar, the thickness, height and distance of perfobond ribs. The failure mode and the load-slip behavior of perfobond connectors were obtained. A theoretical model was put forward to express the load-slip relationship. Analytical formulas of shear capacity and peak slip were also proposed considering the interaction between the concrete dowel and the perforating rebar. The calculation results of the proposals agreed well with the experimental values.

Perforated shear connectors

  • Machacek, Josef;Studnicka, Jiri
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.51-66
    • /
    • 2002
  • Perforated shear connectors currently used in composite steel and concrete structures are described and evaluated. Modifications of the perforated connector suitable for common use injavascript:confirm_mark('abe', '1'); civil and bridge engineering are proposed. The connectors were tested in laboratories of CTU Prague for shear load capacity. Push tests of connectors with 32 mm openings and with 60 mm openings, both in normal and lightweight concrete of different strength characteristics and with different transverse reinforcement, were carried out. The experimental study also dealt with the connector height and parallel arrangement of two connectors and their influence on shear resistance. While extensive tests with static loading were carried out, fatigue tests under repeated loading are still in progress. After statistical evaluation of the experimental results and comparisons with other available data the authors developed reasonable shear resistance formulas for all proposed arrangements.

Nail Withdrawal Resistance and Embedding Strength of Structural Wood Panels with Water Absorption (수분의 흡수에 따른 구조용 목질판넬의 인발 및 함입성능)

  • 오세창
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The use of structural wood based panels like plywood, OSB in many applications involves the use of nails, and data on the performance of panel-nail connection are needed for design and comparative purpose. This study was carried out to develop basic information on nail performance(withdrawal, embedding, nailhead push through) with water absorption in plywood and OSB. In withdrawal resistance test, initial stiffness of plywood performed better than OSB in 24hr soaked condition. The soaked condition reduced average nail withdrawal resistance value about 46% (12d mail), 53%(8d nail) in OSB, 17%(12d mail), 24%(8d mail) in plywood. The nail embedding strength of plywood also performed better than that of OSB and retention value(wet strength/dry strength) yielded similar in each nail types. The nail head push through capacity of OSB was higher than that of plywood in dry condition, but equal or lower in soaked condition. Therefore, critical consideration about structural panels is required in moist applications. The average values of nail withdrawal, nail embedding strength and nail head push through resistance of tested materials meet the minimum requirement of various specification and standards.

  • PDF

EFFECT OF IRRIGATION METHODS ON THE ADHESION OF RESILON/EPIPHANY SEALER AND GUTTA-PERCHA/AH 26 SEALER TO INTRACANAL DENTIN (근관 세척법이 Resilon/Epiphany sealer와 Gutta-percha/AH 26 sealer의 근관 상아질과의 접착에 미치는 영향)

  • Kim, Seo-Kyong;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.98-106
    • /
    • 2008
  • The purpose of this study was to evaluate whether intracanal irrigation method could affect the adhesion between intracanal dentin and root canal filling materials (Gutta-percha/AH 26 sealer and Resilon/Epiphany sealer). Thirty extracted human incisor teeth were prepared. Canals were irrigated with three different irrigation methods as a final rinse and obturated with two different canal filling materials (G groups: Gutta-percha/AH 26 sealer, R groups: Resilon/Epiphany sealer) respectively. Group G1, R1-irrigated with 5.25% NaOCl Group G2, R2-irrigated with 5.25% NaOCl, sterile saline Group G3, R3-irrigated with 5.25% NaOCl, 17% EDTA, sterile saline Thirty obturated roots were horizontally sliced and push-out bond strength test was performed in the universal testing machine. After test, the failure patterns of the specimens were observed using Image-analyzing microscope. The results were as follows. 1. Gutta-percha/AH 26 sealer groups had significantly higher push-out bond strength compared with the Resilon/Epiphany sealer groups (p < 0.05). 2. Push-out bond strength was higher when using 17% EDTA followed by sterile saline than using NaOCl as a final irrigation solution in the Resilon/Epiphany sealer groups (p < 0.05). 3. In the failure pattern analysis, there was no cohesive failure in Group G1, G2, and R1. Gutta-percha/AH 26 sealer groups appeared to exhibit predominantly adhesive and mixed failure patterns, whereas Resilon/Epiphany sealer groups exhibited mixed failures with the cohesive failure occurred within the Resilon substrate.

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

An Evaluation on the Shear Strength for Different Forms of Shear Connector in T-type Composite Beam (T형 합성보의 시어 커넥터 형상에 따른 전단내력 평가에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.279-288
    • /
    • 2006
  • A stud connector was used by the shear connector of a composite beam. The shear connector is an important element in heightening the composition rate of a composite beam .study was based on the experiments conducted on 15 specimens using the push-out test.In this paper, through an experiment, the shear connector of other forms was analyzed instead of the stud connector. It is hoped that this application can be used in composite beams.

Experimental Study on the Shear Capacity of Continuous Cap-Type Shear Connector (연속 캡 형상 전단연결재의 전단 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Jeong, Sug Chang;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.91-99
    • /
    • 2019
  • The push-out tests have been conducted on the specimens which consist of the steel beam with U-shape section and the continuous cap-type shear connector. Existing formulas for the elevation of shear connector capacity were investigated on the basis of test results. The shear capacities of continuous cap-type shear connectors distinctly declined as the diameters of side-hole in the shear connector increased. The rebars through side-hole for the transverse reinforcement improved the shear capacity of continuous cap-type connector by 20 to 30 percent. It was not feasible to obtain the appropriate capacity values of continuous cap-type shear connectors made of thin steel plate like those of in this study, using the existing formulas. The new formula for reflecting the shear strength of penetrative bars was proposed based on the shear equation of Eurocode 4. The slip capacities of continuous cap-type shear connectors were shown to exceed the limit value of 6mm for the sufficiently ductile behavior.

Research on shear distribution of perfobond connector groups with rubber rings

  • Liu, Yangqing;Xin, Haohui;Liu, Yuqing
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.399-414
    • /
    • 2021
  • This paper aims to verify the feasibility of rubber rings to mitigate the shear concentration in perfobond connector (PBL) groups. Firstly, modified push-out tests for five specimens with four holes were conducted to investigate the effects of rubber rings on the shear mechanism of PBL groups. The test results showed that by employing rubber rings on partial holes, more shear forces were distributed to the holes without rubber rings. The rubber rings significantly improved the slip ability of the specimens, and the ductility of PBL groups is dependent on the number and thickness of rubber rings. Subsequently, three-dimensional numerical models were established and validated by the experimental results. According to the plastic strain distribution in concrete dowels, the action principle of rubber rings in PBL groups was explained. Furthermore, the parametric study was conducted to investigate the influential factors on shear distributions, including the width of steel plates, the hole spacing, the number of holes, the rubber ring thickness, and the positions of rubber rings. The parametric analysis results showed that the redistribution of shear forces is significantly affected by the rubber rings with the smallest thickness. By properly employing rubber rings in PBL groups, the shear forces of holes are more even. Finally, an analytical model for PBL groups with rubber rings was proposed to predict the shear distribution at the serviceability stage.

Push-out tests on stud shear connectors with constrained structure of steel-concrete composite beams

  • Qi, Jingjing;Xie, Zuwei;Cao, Hua;Huang, Zhi;Lv, Weirong;Shi, Weihua
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.789-798
    • /
    • 2022
  • The stud shear connector is the main force transfer member in the steel-concrete composite member, and the mechanical behavior is very complicated in the concrete. The concrete around the stud is subjected to the pry-out local pressure concentration of the stud, which can easily produce splitting mirco-cracks. In order to solve the problem of pry-out local splitting of stud shear connector, a kind of stud shear connector with constraint measure is proposed in this paper. Through the push-out test, the interface shear behavior of the new stud shear connector between steel and concrete flange plate was studied, and the difference between the new stud shear connector and the traditional stud connector was compared. The results show that the stud shear connector with constraint measure can effectively avoid the adverse effect of local pressure splitting by relying on its own constraint measure. The shear stiffness of the interface between steel and concrete flange plates is greatly improved, which provides a theoretical basis for the design of strong connection coefficient of steel-concrete composite structures.