• Title/Summary/Keyword: Push-out

Search Result 397, Processing Time 0.028 seconds

The Behavior of Composite Bridge Using Slab Anchor (Slab Anchor를 사용한 합성교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Kim, Jong-Hun;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.177.1-182
    • /
    • 2002
  • 본 연구는 합성교량의 경우 브라켓이나 가로보에 사용되고 비합성교량의 경우 연결재로 사용되는 스랩앵커를 Push-Out Test를 하여 실험으로 얻은 특성을 실제 소수주형모델에 적용하여 FEM해석을 통하여 거동특성을 파악 하고자 한다. 일반적으로 전단연결재 실험의 경우 콘크리트 슬래브와 강재 주형 사이에 직접 길이 방향 전단력을 작용시킬 수 있을 뿐 아니라 실험의 편리함 때문에 주로 Push-out 실험이 많이 이용되고 있다. 본 실험에서는 BS-5400에 제시된 바에 근거하여 실험체를 제작하였다. 이 실험을 통하여 탄성구간에서의 강성(k) 값을 알아내어 3D FEM 해석에 적용한다. 이때 콘크리트 바닥판과 강재와의 연결을 축 방향으로는 특정한 강성 값을 넣을 수 있는 Joint Element를 사용하여 연결시키고, 1경간 단순지지와 2경간 연속교에 대하여 연구를 수행하는데, 1경간 단순지지의 경우에는 Joint Element에 여러 강성 값과 실험을 통해 얻은 강성 값을 적용하여 합성거동을 파악하고 강성 값에 따른 합성정도를 규명하고자 한다. 또한 2경간 연속교에서는 슬랩앵커의 강성 값을 적용하여 많이 문제시되고 있는 내부지점부에 슬랩앵커를 사용하였을 때 슬래브의 인장응력이 어떤 변화양상을 나타내는지 파악 하고자한다.

  • PDF

Calcium silicate-based root canal sealers: a literature review

  • Lim, Miyoung;Jung, Chanyong;Shin, Dong-Hoon;Cho, Yong-bum;Song, Minju
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.35.1-35.17
    • /
    • 2020
  • Epoxy resin-based sealers are currently widely used, and several studies have considered AH Plus to be the gold-standard sealer. However, it still has limitations, including possible mutagenicity, cytotoxicity, inflammatory response, and hydrophobicity. Drawing upon the advantages of mineral trioxide aggregate, calcium silicate-based sealers were introduced with high levels of biocompatibility and hydrophilicity. Because of the hydrophilic environment in root canals, water resorption and solubility of root canal sealers are important factors contributing to their stability. Sealers displaying lower microleakage and stronger push-out bond strength are also needed to endure the dynamic tooth environment. Although the physical properties of calcium silicate-based sealers meet International Organization for Standardization recommendations, and they have consistently reported to be biocompatible, they have not overcome conventional resin-based sealers in actual practice. Therefore, further studies aiming to improve the physical properties of calcium silicate-based sealers are needed.

An Evaluation on the Shear Strength for Different Forms of Shear Connector in T-type Composite Beam (T형 합성보의 시어 커넥터 형상에 따른 전단내력 평가에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.279-288
    • /
    • 2006
  • A stud connector was used by the shear connector of a composite beam. The shear connector is an important element in heightening the composition rate of a composite beam .study was based on the experiments conducted on 15 specimens using the push-out test.In this paper, through an experiment, the shear connector of other forms was analyzed instead of the stud connector. It is hoped that this application can be used in composite beams.

Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: an experimental investigation

  • Shariati, Mahdi;Tahmasbi, Farzad;Mehrabi, Peyman;Bahadori, Alireza;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.237-247
    • /
    • 2020
  • Shear connectors are essential elements in the design of steel-concrete composite systems. These connectors are utilized to prevent the occurrence of potential slips at the interface of steel and concrete. The two types of shear connectors which have been recently employed in construction projects are C- and L-shaped connectors. In the current study, the behavior of C and L-shaped angle shear connectors is investigated experimentally. For this purpose, eight push-out tests were composed and subjected to monotonic loading. The load-slip curves and failure modes have been determined. Also, the shear strength of the connectors has been compared with previously developed relationships. Two failure modes of shear connectors were observed: 1) concrete crushing-splitting and 2) shear connector fracture. It was found that the L-shaped connectors have less shear strength compared to C-shaped connectors, and decreasing the angle leg size increases the shear strength of the C-shaped connectors, but decreases the relative ductility and strength of L-shaped connectors.

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Experimental Study on the Shear Capacity of Continuous Cap-Type Shear Connector (연속 캡 형상 전단연결재의 전단 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Jeong, Sug Chang;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.91-99
    • /
    • 2019
  • The push-out tests have been conducted on the specimens which consist of the steel beam with U-shape section and the continuous cap-type shear connector. Existing formulas for the elevation of shear connector capacity were investigated on the basis of test results. The shear capacities of continuous cap-type shear connectors distinctly declined as the diameters of side-hole in the shear connector increased. The rebars through side-hole for the transverse reinforcement improved the shear capacity of continuous cap-type connector by 20 to 30 percent. It was not feasible to obtain the appropriate capacity values of continuous cap-type shear connectors made of thin steel plate like those of in this study, using the existing formulas. The new formula for reflecting the shear strength of penetrative bars was proposed based on the shear equation of Eurocode 4. The slip capacities of continuous cap-type shear connectors were shown to exceed the limit value of 6mm for the sufficiently ductile behavior.

Research on shear distribution of perfobond connector groups with rubber rings

  • Liu, Yangqing;Xin, Haohui;Liu, Yuqing
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.399-414
    • /
    • 2021
  • This paper aims to verify the feasibility of rubber rings to mitigate the shear concentration in perfobond connector (PBL) groups. Firstly, modified push-out tests for five specimens with four holes were conducted to investigate the effects of rubber rings on the shear mechanism of PBL groups. The test results showed that by employing rubber rings on partial holes, more shear forces were distributed to the holes without rubber rings. The rubber rings significantly improved the slip ability of the specimens, and the ductility of PBL groups is dependent on the number and thickness of rubber rings. Subsequently, three-dimensional numerical models were established and validated by the experimental results. According to the plastic strain distribution in concrete dowels, the action principle of rubber rings in PBL groups was explained. Furthermore, the parametric study was conducted to investigate the influential factors on shear distributions, including the width of steel plates, the hole spacing, the number of holes, the rubber ring thickness, and the positions of rubber rings. The parametric analysis results showed that the redistribution of shear forces is significantly affected by the rubber rings with the smallest thickness. By properly employing rubber rings in PBL groups, the shear forces of holes are more even. Finally, an analytical model for PBL groups with rubber rings was proposed to predict the shear distribution at the serviceability stage.

Experimental investigation of natural bond behavior in circular CFTs

  • Naghipour, Morteza;Khalili, Aidin;Hasani, Seyed Mohammad Reza;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.191-207
    • /
    • 2022
  • Undoubtedly, the employment of direct bond interaction between steel and concrete is preceding the other mechanisms because of its ease of construction. However, the large scatter in the experimental data about the issue has hindered the efforts to characterize bond strength. In the following research, the direct bond interaction and bond-slip behavior of CFTs with circular cross-section were examined through repeated load-reversed push-out tests until four cycles of loading. The influence of different parameters including the diameter of the tube and the use of shear tabs were assessed. Moreover, the utilization of expansive concrete and external spirals was proposed and tested as ways of improving bond strength. According to the results section dimensions, tube slenderness, shrinkage potential of concrete, interface roughness and confinement are key factors in a natural bond. Larger diameters will lead to a considerable drop in bond strength. The use of shear tabs by their associated bending moments increases the bond stress up to eight times. Furthermore, employment of external spirals and expansive concrete have a sensible effect on enhancing bonds. Macro-locking was also found to be the main component in achieving bond strength.

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.