• Title/Summary/Keyword: Purkinje cell protein-2

Search Result 7, Processing Time 0.023 seconds

Identification of Genes Differentially Expressed in Wild Type and Purkinje Cell Degeneration Mice

  • Xiao, Rui;Park, Youngsook;Dirisala, Vijaya R.;Zhang, Ya-Ping;Um, Sang June;Lee, Hoon Taek;Park, Chankyu
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.219-227
    • /
    • 2005
  • Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin-28k, paravalbumin, matrix gamma-carboxyglutamate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal $Ca^{2+}$ signaling in the pcd phenotype.

Treadmill exercise enhances motor coordination and ameliorates Purkinje cell loss through inhibition on astrocyte activation in the cerebellum of methimazole-induced hypothyroidism rat pups

  • Shin, Mal-Soon;Kim, Bo-Kyun;Lee, Shin-Ho;Kim, Tae-Soo;Heo, Yu-Mi;Choi, Jun-Ho;Kim, Chang-Ju;Lim, Baek-Vin
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.73-84
    • /
    • 2012
  • Thyroid hormones are important for the development of the brain including the cerebellum. In the present study, we investigated the effect of treadmill exercise on the survival of Purkinje neurons and the activation of astrocytes in the cerebellar vermis of hypothyroidism-induced rat pups. On the day of perinatal 14, pregnant rats were divided into two groups (n = 5 in each group): the pregnant control group and the pregnantmethimazole (MMI)-treated group. For the induction of hypothyroidism in the rat pups, MMI was added to the drinking water (0.02% wt/vol), from the day of perinatal 14 to postnatal 49. After delivery, male rat pups born from the pregnant control group were assigned to the control group. Male rat pups born from the MMI-treated group were divided into the hypothyroidism-induction group, the hypothyroidism-induction with treadmill exercise group, and the hypothyroidism-induction with thyroxine (T4) treatment group (n = 10 in each group). The rat pups in the exercise group were forced to run on a treadmill for 30 min once a day for 4 weeks, starting on postnatal day 22. In the hypothyroidism-induced rat pups, motor coordination was reduced and Purkinje cell death and reactive astrocytes in the cerebellar vermis were increased. Treadmill exercise enhanced motor coordination, increased the survival of Purkinje neurons, down-regulated reactive astrocytes, and enhanced brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) expressions in the hypothyroidism-induced rat pups. These results suggest that treadmill exercise has beneficial effects in terms of protecting against thyroid dysfunction by increasing T3 and T4 and the related protein, BDNF, as well as TrkB, inhibition on astrocyte activation and the reduction of Purkinje cell loss regarding the cerebellum in hypothyroidism rat pups.

Pcp-2 Interacts Directly with Kinesin Superfamily KIF21A Protein (Kinesin superfamily KIF21A와 직접 결합하는 Pcp-2의 규명)

  • Park, Hye-Young;Kim, Sang-Jin;Ye, Sung-Su;Jang, Won-Hee;Lee, Sang-Kyeong;Park, Yeong-Hong;Jung, Yong-Wook;Moon, Il-Soo;Kim, Moo-Seong;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1059-1065
    • /
    • 2008
  • KIF21A is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors, anterograde axonal transporters of cargoes. Recently, congenital fibrosis of the extraocular muscles 1 (CFEOM1) has been shown to result from a small number of recurrent heterozygous missense mutations of KIF21A. CFEOM1 results from the inability of mutated KIF21A to successfully deliver cargoes to the development of the occulo-motor neuron or neuromuscular junction. Here, we used an yeast two-hybrid system to identify a protein that interacts with the WD-40 repeat domain of KIF21A and found a specific interaction with Purkinje cell protein-2 (Pcp-2), a small protein also known as L7. Pcp-2 protein bound to the WD-40 domain of KIF21A and KIF21B but not to other KIFs in yeast two-hybrid assays. In addition, this specific interaction was also observed in the glutathione S-transferase pull-down assay. An antibody to Pcp-2 specifically co-immunoprecipitated KIF21A associated with Pcp-2 from mouse brain extracts. These results suggest that Pcp-2 may be involved in the KIF21A-mediated transport as a KIF21A adaptor protein.

Effects of Treadmill Exercise on Cerebellar Astrocyte Activation and Purkinje Cell, and Motor Function in Aged Rats (트레드밀 운동이 노화 흰쥐 소뇌의 성상세포 활성과 퍼킨제 세포 및 운동기능 변화에 미치는 영향)

  • Lee, Hyo-Cheol;Kim, Hyung-Jun
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.4
    • /
    • pp.481-492
    • /
    • 2019
  • The purpose of this study was to investigate the effects of treadmill exercise on cerebellar astrocyte activation and purkinje cells, neurotrophic factors expression, and motor function in aged rats. Sprague-Dawley (SD) rats were used and divided into three groups; (1) Young Control Group (YCG; 3months aged, n=10); (2) Old Control Group; (OCG; 24months aged, n=10); (3) Old Exercise Group (OEG; 24months aged, n=10). Rats were then subjected to treadmill exercise for 5 days per week for 12 weeks during which time the speed of the treadmill was gradually increased. The results revealed that in the rota-rod test, motor function was significantly increased in the OEG compared to the OCG (p<.05), and similarly YCG. Number of calbindin-positive purkinje cell expression significantly increased in the cerebellar vermis of OEG compared to the OCG (p<.05), and similarly YCG. GFAP-, NMDAR-positive cell expression significantly increased in the OEG (respectively p<.001), GFAP and GLAST protein levels were significantly increased in the cerebellum of OEG compared to the OCG (p<.05, p<.001) and similarly YCG. BDNF and NGF protein levels were highest in the YCG, increased in the OEG compared to OCG (p<.001, p<.05). These result show that regular exercise not only improved astrocyte activation, but also increased purkinje cell expression in the cerebellum and motor function by increasing the neurotrophic factors in aged rats.

Ultrastructural Study on the Cerebellar Purkinje Cell of the Head-Irradiated Rat (과량의 방사선 국소조사가 흰쥐 소뇌 Purkinje세포의 미세구조에 미치는 영향)

  • Ahn, E-Tay;Yoon, Kyoo-Tae;Yang, Nam-Gil;Ko, Jeong-Sik;Park, Kyung-Ho;Kim, Jin-Gook
    • Applied Microscopy
    • /
    • v.24 no.2
    • /
    • pp.48-62
    • /
    • 1994
  • The acute irradiation effect on rat Purkinje cell was carried out. Anesthetized rats, weighing 200-250g each, were exposed their heads to the linear accelerator (ML-4MV) with the doses of 3,000 rads or 6,000 rads respectively. Irradiated rats were sacrificed by perfusion fixation under anesthesia, six hours, two days and six days following the irradiations. Rats were perfused with the fixative of 1% glutaraldehyde-1% paraformaldehyde solution (pH 7.4). Small pieces of cerebellar cortices were taken out. Tissue blocks were washed out, and were refixed in the 2% osmium tetroxide solution. After dehydration, tissues were embedded in the araldite mixture. Ultrathin sections stained with uranyl acetate-lead citrate solution, were examined with an electron microscope. The results observed were as follow; 1. Many dark Purkinje cells exhibited most severe cellular alterations on 6 hours. But after the 2 or 6 days, the cells exhibited only some alterations of cytoplasmic organelles. 2. Many granular and agranular endoplasmic reticula exhibited the fusion of cisterns. These reticular alterations were most severe on 6 hours following irradiation. But the alterations were hardly found on 6 days. 3. In the Golgi region, alterations including the adhesion of lamelliform cisterns, enlarged saccules, and increased number of vesicles, etc, were seen on 6 hours. But the Golgi complexes were almost recovered on 6 days. 4. Lysosomes were abundant on 6 hours or 2 days, but some residual bodies were found on 6 days. 5. Mitochondrial changes were also most severe at on hours, and they were recovered thereafter. From the results, it was concluded that the cerebellar Purkinje cells reacted to the high doses of irradiation by hyperactive protein synthesis, autolytic activities and energy metabolism. The reaction was most active in the early stage. It implies that motor-control function of Purkinje cells are severely disturbed in the early stage of irradiation.

  • PDF

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum

  • Park, Yong Soo;Jeon, Ji Hyun;Lee, Seung Hee;Paik, Sun Sook;Kim, In-Beom
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.110-116
    • /
    • 2018
  • Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium ($Ca^{2+}$)-activated chloride ($Cl^-$) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.