Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.8.1059

Pcp-2 Interacts Directly with Kinesin Superfamily KIF21A Protein  

Park, Hye-Young (Departments of Biochemistry, College of Medicine, Inje University)
Kim, Sang-Jin (Departments of Neurology, College of Medicine, Inje University)
Ye, Sung-Su (Departments of Biochemistry, College of Medicine, Inje University)
Jang, Won-Hee (Departments of Biochemistry, College of Medicine, Inje University)
Lee, Sang-Kyeong (Departments of Psychiatry, College of Medicine, Inje University)
Park, Yeong-Hong (Departments of Biochemistry, College of Medicine, Inje University)
Jung, Yong-Wook (Departments of Anatomy, College of Medicine, Dongguk University)
Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University)
Kim, Moo-Seong (Departments of Neurosurgery, College of Medicine, Inje University)
Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.18, no.8, 2008 , pp. 1059-1065 More about this Journal
Abstract
KIF21A is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors, anterograde axonal transporters of cargoes. Recently, congenital fibrosis of the extraocular muscles 1 (CFEOM1) has been shown to result from a small number of recurrent heterozygous missense mutations of KIF21A. CFEOM1 results from the inability of mutated KIF21A to successfully deliver cargoes to the development of the occulo-motor neuron or neuromuscular junction. Here, we used an yeast two-hybrid system to identify a protein that interacts with the WD-40 repeat domain of KIF21A and found a specific interaction with Purkinje cell protein-2 (Pcp-2), a small protein also known as L7. Pcp-2 protein bound to the WD-40 domain of KIF21A and KIF21B but not to other KIFs in yeast two-hybrid assays. In addition, this specific interaction was also observed in the glutathione S-transferase pull-down assay. An antibody to Pcp-2 specifically co-immunoprecipitated KIF21A associated with Pcp-2 from mouse brain extracts. These results suggest that Pcp-2 may be involved in the KIF21A-mediated transport as a KIF21A adaptor protein.
Keywords
Kinesin; Purkinje cell protein-2; adaptor proteins; WD-40 repeats;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296   DOI   ScienceOn
2 Fong, H. K., J. B. Hurley, R. S. Hopkins, R. Miake-Lye, M. S. Johnson, R. F. Doolittle and M. I. Simon. 1986. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83, 2162-2166
3 Goldstein, L. S. 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. USA 98, 6999-7003
4 Hirokawa, N. and Y. Noda. 2008. Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiol. Rev. 88, 1089-1118   DOI   ScienceOn
5 Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. Korean Journal of Life Science 17, 889-895   과학기술학회마을   DOI   ScienceOn
6 Mohn, A. R., R. M. Feddersen, M. S. Nguyen and B. H. Koller. 1997. Phenotypic analysis of mice lacking the highly abundant Purkinje cell- and bipolar neuron-specific PCP2 protein. Mol. Cell Neurosci. 9, 63-76   DOI   ScienceOn
7 Mullen, R. J., E. M. Eicher and R. L. Sidman. 1976. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. USA 73, 208-212
8 Neer, E. J., C. J. Schmidt, R. Nambudripad and T. F. Smith. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300   DOI   ScienceOn
9 Nordquist, D. T., C. A. Kozak and H. T. Orr. 1988. cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J. Neurosci. 8, 4780-4789   DOI
10 Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 3rd Edition. Cold Spring Habor Laboratory, Cold Spring Habor, New York
11 Simon, M. I., M. P. Strathmann and N. Gautam. 1991. Diversity of G proteins in signal transduction. Science 252, 802-808   DOI
12 Wanner, I., S. L. Baader, J. Oberdick and K. Schilling. 2000. Changing subcellular distribution and activity-dependent utilization of a dendritically localized mRNA in developing Purkinje cells. Mol. Cell Neurosci. 15, 275-287   DOI   ScienceOn
13 Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265   DOI   ScienceOn
14 Redd, K. J., J. Oberdick, J. McCoy, B. M. Denker and Y. Luo. 2002. Association and colocalization of G protein alpha subunits and Purkinje cell protein 2 (Pcp2) in mammalian cerebellum. J. Neurosci. Res. 70, 631-637   DOI   ScienceOn
15 Vassileva, G., R. J. Smeyne and J. I. Morgan. 1997. Absence of neuroanatomical and behavioral deficits in L7/pcp-2-null mice. Brain Res. Mol. Brain Res. 46, 333-337   DOI   ScienceOn
16 Luo, Y. and B. M. Denker. 1999. Interaction of heterotrimeric G protein Galphao with Purkinje cell protein-2. Evidence for a novel nucleotide exchange factor. J. Biol. Chem. 274, 10685-10688   DOI   ScienceOn
17 Zhang, X., H. Zhang and J. Oberdick. 2002. Conservation of the developmentally regulated dendritic localization of a Purkinje cell-specific mRNA that encodes a G-protein modulator: comparison of rodent and human Pcp2 (L7) gene structure and expression. Brain Res. Mol. Brain Res. 105, 1-10   DOI   ScienceOn
18 Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384   DOI
19 Oberdick, J., F. Levinthal and C. Levinthal. 1988. A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron. 1, 367-376   DOI   ScienceOn
20 Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802   DOI   ScienceOn
21 Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi and N. Hirokawa. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87   DOI   ScienceOn
22 Valenzuela, D., X. Han, U. Mende, C. Fankhauser, H. Mashimo, P. Huang, J. Pfeffer, E. J. Neer and M. C. Fishman. 1997. G alpha(o) is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc. Natl. Acad. Sci. USA 94, 1727-1732
23 Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526   DOI   ScienceOn
24 Seog, D. H., D. H. Lee and S. K. Lee. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19, 1-7   DOI   ScienceOn
25 Su, Q., Q. Cai, C. Gerwin, C. L. Smith and Z. H. Sheng. 2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6, 941-953   DOI   ScienceOn
26 Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki and N. Hirokawa. 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220   DOI   ScienceOn
27 Okada, Y., H. Yamazaki, Y. Sekine-Aizawa and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780   DOI   ScienceOn
28 Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi and N. Hirokawa. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597   DOI   ScienceOn
29 Berrebi, A. S. and E. Mugnaini. 1992. Characteristics of labeling of the cerebellar Purkinje neuron by L7 antiserum. J. Chem. Neuroanat. 5, 235-243   DOI   ScienceOn
30 Holm, M., C. S. Hardtke, R. Gaudet and X. W. Deng. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20, 118-127   DOI   ScienceOn
31 Engle, E. C., B. C. Goumnerov, C. A. McKeown, M. Schatz, D. R. Johns, J. D. Porter and A. H. Beggs. 1997. Oculomotor nerve and muscle abnormalities in congenital fibrosis of the extraocular muscles. Ann. Neurol. 41, 314-325   DOI   ScienceOn
32 Hirokawa, N. and R. Takemura. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214   DOI   ScienceOn
33 Miki, H., M. Setou, K. Kaneshiro and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011
34 Nakagawa, T., M. Setou, D. H. Seog, K. Ogasawara, N. Dohmae, K. Takio and N. Hirokawa. 2000. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569-581   DOI   ScienceOn
35 Eugster, A., G. Frigerio, M. Dale and R. Duden. 2004. The alpha- and beta'-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol. Biol. Cell 15, 1011-1023   DOI   ScienceOn
36 Demer, J. L., R. A. Clark and E. C. Engle. 2005. Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A. Invest. Ophthalmol. Vis. Sci. 46, 530-539
37 Yamada, K., C. Andrews, W. M. Chan, C. A. McKeown, A. Magli, T. de Berardinis, A. Loewenstein, M. Lazar, M. O'Keefe, R. Letson, A. London, M. Ruttum, N. Matsumoto, N. Saito, L. Morris, M. Del Monte, R. H. Johnson, E. Uyama, W. A. Houtman, B. de Vries, T. J. Carlow, B. L. Hart, N. Krawiecki, J. Shoffner, M. C. Vogel, J. Katowitz, S. M. Goldstein, A. V. Levin, E. C. Sener, B. T. Ozturk, A. Z. Akarsu, M. C. Brodsky, F. Hanisch, R. P. Cruse, A. A. Zubcov, R. M. Robb, P. Roggenkaemper, I. Gottlob, L. Kowal, R. Battu, E. I. Traboulsi, P. Franceschini, A Newlin, J. L. Demer and E. C. Engle. 2003. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat. Genet. 35, 318-321   DOI   ScienceOn
38 Jiang, M., M. S. Gold, G. Boulay, K. Spicher, M. Peyton, P. Brabet, Y. Srinivasan, U. Rudolph, G. Ellison and L. Birnbaumer. 1998. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc. Natl. Acad. Sci. USA 95, 3269-3274
39 Karcher, R. L., S. W. Deacon and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27   DOI   ScienceOn
40 Marszalek, J. R., J. A. Weiner, S. J. Farlow, J. Chun and L. S. Goldstein. 1999. Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J. Cell Biol. 145, 469-479   DOI   ScienceOn
41 Saitoh, O., Y. Kubo, M. Odagiri, M. Ichikawa, K. Yamagata and T. Sekine. 1999. RGS7 and RGS8 differentially accelerate G protein-mediated modulation of K+ currents. J. Biol. Chem. 274, 9899-9904   DOI   ScienceOn