Browse > Article
http://dx.doi.org/10.9729/AM.2018.48.4.110

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum  

Park, Yong Soo (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Jeon, Ji Hyun (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Lee, Seung Hee (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Paik, Sun Sook (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Kim, In-Beom (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Publication Information
Applied Microscopy / v.48, no.4, 2018 , pp. 110-116 More about this Journal
Abstract
Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium ($Ca^{2+}$)-activated chloride ($Cl^-$) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.
Keywords
Anoctamin 1; Calcium-activated chloride channel; Immunohistochemistry; Cerebellum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schreiber R, Faria D, Skryabin B V, Wanitchakool P, Rock J R, and Kunzelmann K (2015) Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch. 467, 1203-1213.   DOI
2 Cherkashin A P, Kolesnikova A S, Tarasov M V, Romanov R A, Rogachevskaja O A, Bystrova M F, and Kolesnikov S S (2016) Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Arch. 468, 305-319.   DOI
3 Cho H and Oh U (2013) Anoctamin 1 mediates thermal pain as a heat sensor. Curr. Neuropharmacol. 11, 641-651.   DOI
4 Schroeder B C, Cheng Y, Jan Y N, and Jan L Y (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019-1029.   DOI
5 Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, Tomati V, Gianotti A, Zegarra-Moran O, Pedemonte N, Rea F, Ravazzolo R, and Galietta L J (2012) Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J. Physiol. 590, 6141-6155.   DOI
6 Stephan A B, Shum E Y, Hirsh S, Cygnar K D, Reisert J, and Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. U. S. A. 106, 11776-11781.   DOI
7 Stohr H, Heisig J B, Benz P M, Schoberl S, Milenkovic V M, Strauss O, Aartsen W M, Wijnholds J, Weber B H, and Schulz H L (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J. Neurosci. 29, 6809-6818.   DOI
8 Sun H, Xia Y, Paudel O, Yang X R, and Sham J S (2012) Chronic hypoxiainduced upregulation of Ca2+-activated Cl- channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J. Physiol. 590, 3507-3521.   DOI
9 Takayama Y, Uta D, Furue H, and Tominaga M (2015) Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. U. S. A. 112, 5213-5218.   DOI
10 Wolf H K, Buslei R, Schmidt-Kastner R, Schmidt-Kastner P K, Pietsch T, Wiestler O D, and Blumcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 44, 1167-1171.   DOI
11 Davis A J, Shi J, Pritchard H A, Chadha P S, Leblanc N, Vasilikostas G, Yao Z, Verkman A S, Albert A P, and Greenwood I A (2012) Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01. Br. J. Pharmacol. 168, 773-784.
12 Cho H, Yang Y D, Lee J, Lee B, Kim T, Jang Y, Back S K, Na H S, Harfe B D, Wang F, Raouf R, Wood J N, and Oh U (2012) The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015-1021.   DOI
13 Cho S J, Jeon J H, Chun D I, Yeo S W, and Kim I B (2014) Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 357, 563-569.   DOI
14 Dauner K, Mobus C, Frings S, and Mohrlen F (2013) Targeted expression of anoctamin calcium-activated chloride channels in rod photoreceptor terminals of the rodent retina. Invest. Ophthalmol. Vis. Sci. 54, 3126-3136.   DOI
15 Delvendahl I and Hallermann S (2016) The cerebellar mossy fiber synapse as a model for high-frequency transmission in the mammalian CNS. Trends Neurosci. 39, 722-737.   DOI
16 Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un) loved? Proc. Am. Thorac. Soc. 1, 22-27.   DOI
17 Faria D, Rock J R, Romao A M, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstadt H, Herrmann E, Kunzelmann K, and Schreiber R (2014) The calcium-activated chloride channel anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85, 1369-1381.   DOI
18 Zhang X D, Lee J H, Lv P, Chen W C, Kim H J, Wei D, Wang W, Sihn CR, Doyle K J, Rock J R, Chiamvimonvat N, and Yamoah E N (2015b) Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A. Proc. Natl. Acad. Sci. U. S. A. 112, 2575-2580.   DOI
19 Yang Y D, Cho H, Koo J Y, Tak M H, Cho Y, Shim W S, Park S P, Lee J, Lee B, Kim B M, Raouf R, Shin Y K, and Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210-1215.   DOI
20 Zhang W, Schmelzeisen S, Parthier D, Frings S, and Mohrlen F (2015a) Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLoS One 10, e0142160.   DOI
21 Zhang Y, Zhang Z, Xiao S, Tien J, Le S, Le T, Jan L Y, and Yang H (2017) Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron 95, 1103-1111.   DOI
22 Neureither F, Ziegler K, Pitzer C, Frings S, and Mohrlen F (2017) Impaired motor coordination and learning in mice lacking anoctamin 2 calcium-gated chloride channels. Cerebellum 16, 929-937.   DOI
23 Frings S, Reuter D, and Kleene S J (2000) Neuronal $Ca^{2+}$-activated $Ca^{-}$channels: homing in on an elusive channel species. Prog. Neurobiol. 60, 247-289.   DOI
24 Forsythe I D and Barnes-Davies M (1993) The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body. Proc. Biol. Sci. 251, 143-150.   DOI
25 Ha G E, Lee J, Kwak H, Song K, Kwon J, Jung S Y, Hong J, Chang G E, Hwang E M, Shin H S, Lee C J, and Cheong E (2016) The $Ca^{2+}$-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat. Commun. 7, 13791.   DOI
26 Hartzell C, Putzier I, and Arreola J (2005) Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719-758.   DOI
27 Huang F, Rock J R, Harfe B D, Cheng T, Huang X, Jan Y N, and Jan L Y (2009) Studies on expression and function of the TMEM16A calciumactivated chloride channel. Proc. Natl. Acad. Sci. U. S. A. 106, 21413-21418.   DOI
28 Ousingsawat J, Martins J R, Schreiber R, Rock J R, Harfe B D, and Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 284, 28698-28703.   DOI
29 Romanenko V G, Catalan M A, Brown D A, Putzier I, Hartzell H C, Marmorstein A D, Gonzalez-Begne M, Rock J R, Harfe B D, and Melvin J E (2010) Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J. Biol. Chem. 285, 12990-13001.   DOI
30 Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff P G, Solberg O D, Donne M L, Huang X, Sheppard D, Fahy J V, Wolters P J, Hogan BL, Finkbeiner W E, Li M, Jan Y N, Jan L Y, and Rock J R (2012) Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. U. S. A. 109, 16354-16359.   DOI
31 Huang W C, Xiao S, Huang F, Harfe B D, Jan Y N, Jan L Y (2012) Calciumactivated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74, 179-192.   DOI
32 Lee B, Cho H, Jung J, Yang Y D, Yang D J, and Oh U (2014) Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 10, 5.
33 Jeon J H, Paik S S, Chun M H, Oh U, and Kim I B (2013) Presynaptic localization and possible function of calcium-activated chloride channel anoctamin 1 in the mammalian retina. PLoS One 8, e67989.   DOI
34 Jeon J H, Park J W, Lee J W, Jeong S W, Yeo S W, and Kim I B (2011) Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea. Cell Tissue Res. 345, 223-230.   DOI
35 Leclerc N, Beesley P W, Brown I, Colonnier M, Gurd J W, Paladino T, and Hawkes R (1989) Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol. 280, 197-212.   DOI
36 Liu B, Linley J E, Du X, Zhang X, Ooi L, Zhang H, and Gamper N (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. J. Clin. Invest. 120, 1240-1252.   DOI
37 Llinas R R and Walton K D (1998) Cerebellum. In: The Synaptic Organization of the Brain, ed. Shepherd G M, pp. 255-288, (Oxford University Press, Oxford).
38 Namkung W, Phuan P W, and Verkman A S (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J. Biol. Chem. 286, 2365-2374.   DOI
39 Apps R and Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat. Rev. Neurosci. 6, 297-311.   DOI
40 Barmack N H and Yakhnitsa V (2011) Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 17, 221-236.   DOI
41 Buchholz B, Faria D, Schley G, Schreiber R, Eckardt K U, and Kunzelmann K (2014) Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 85, 1058-1067.   DOI
42 Billig G M, Pal B, Fidzinski P, and Jentsch T J (2011) $Ca^{2+}$-activated $Ca^{-}$ currents are dispensable for olfaction. Nat. Neurosci. 14, 763-769.   DOI
43 Bloedel J R and Bracha V (2009) Cerebellar functions. In: Encyclopedic Reference of Neuroscience, eds. Binder M D, Hirokawa N, Windhorst U, pp. 667-671, (Springer-Verlag, Heidelberg).
44 Borst J G and Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. 489, 825-840.   DOI
45 Bulley S, Neeb Z P, Burris S K, Bannister J P, Thomas-Gatewood C M, Jangsangthong W, and Jaggar J H (2012) TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ. Res. 111, 1027-1036.   DOI
46 Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, and Galietta L J (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590-594.   DOI
47 Catalan M A, Kondo Y, Pena-Munzenmayer G, Jaramillo Y, Liu F, Choi S, Crandall E, Borok Z, Flodby P, Shull G E, and Melvin J E (2015) A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc. Natl. Acad. Sci. U. S. A. 112, 2263-2268.   DOI