• Title/Summary/Keyword: Purine-N

Search Result 78, Processing Time 0.025 seconds

Purine Derivatives Excreted in Urine as an Indicator Estimating Microbial Yield from the Rumen: A - Review

  • Kanjanapruthipong, J.;Len, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.209-216
    • /
    • 1998
  • The paper presented here is aimed at increasing knowledge on purine metabolism in ruminants and hence the quantification of microbial cells entering the small intestine from urinaη excretion of purine derivatives. Nucleic acid metabolisms of micro-organisms in the rumen, digestion and absorption of nucleic acids entering the intestines, metabolisms of absorbed and endogenous purines involving de novo synthesis of nucleic acids in the ruminants host, and the relationship between absorbed and excreted purines are reviewed. Principal concerns about an amount of purine derivatives excreted in urine in relation to a change in purine-N: total-N ratios in rumen microbes that leave the rumen are discussed. The use of urinary excretion of purine derivatives as an indicator of the amount of microbial biomass leaving the rumen has to be done with some caution since it may be impossible to get a representative sample of microbes entering the intestine and thus yield estimates are relative rather than absolute.

EFFECT OF LEVEL OF FEED INTAKE ON THE EXCRETION OF PURINE DERIVATIVES AND PURINE DERIVATIVES TO CREATININE RATIO IN THE URINE OF SHEEP

  • Han, Y.K.;Shin, H.T.;Landis, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.465-468
    • /
    • 1992
  • Urinary purine derivatives and creatinine excretion was measured in a total of 4 white Alpine sheep. They were given diets 718 to 1060 g/kg dry matter (DM) of roughage. The crude protein content of this diets was on average $93.87{\pm}5.57g$ in kg DM. Purine derivatives-N excretion increased linearly with incremental DM intake and was significantly correlated (n = 16) with amounts of digestible organic matter (DOM) intake: allantoin-N (mg) = 1.205 (${\pm}0.070$) $\times$ DOM (g) - 136.709 (${\pm}37.399$), r = 0.9770, RSD = 22.97; uricacid-N (mg) = 0.131 (${\pm}0.041$) $\times$ DOM (g) + 11.380 (${\pm}21.881$), r = 0.6306, RSD = 13.44; Hypoxanthine-N (mg) = 0.049 (${\pm}0.014$) $\times$ DOM (g) - 28.640 (${\pm}7.708$), r = 0.6544, RSD = 4.73; total purine derivatives-N (mg) = 1.385 (${\pm}0.083$) $\times$ DOM (g) - 90.261 (${\pm}44.552$), r = 0.9706, RSD = 27.47. Microbial protein synthesis per kg DOM was estimated of 113 g. The urinary creatinine-N excretion was on average 9.10 mg/kg live weight (LW) with a standard error of 0.12 mg creatinine-N per kg LW. The excretion of creatinine excreton was not related to feed intake. Daily creatinine excretion (mg/d) was calculated from individual LW measurements and the average creatinine excretion (mg/kg LW). It was possible to predict the daily urinary purine derivatives excretion (r = 0.9720 for allantoin, r = 0.9886 for total purine derivatives) from the ratio of purine derivatives (mg/100 ml) and creatinine (mg/100 ml) in the urine and the daily creatinine excretion.

DETERMINATION OF PURINE AND PYRIMIDINE BASES IN RUMEN MICRO-ORGANISMS BY REVERSED PHASE HPLC AFTER HYDROLYTIC DIGESTION UNDER PRESSURE

  • Han, Y.K.;Landis, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.161-164
    • /
    • 1991
  • A rapid and accurate method is described for the determination of nucleo-bases in rumen micro-organisms. A procedure to satisfactorily hydrolyse the micro-organisms involving reaction with a mixture of readily volatile organic acids (acetic and formic acids) under high pressure, is proposed, and optimal conditions for an analytical procedure with reversed phase HPLC is described. The following nucleobases contents (mmol/kg DM) of rumen micro-organisms were found: Adenine (Ade), 82.62; Guanine (Gua), 61.34; Cytosine (Cyt), 84.61; Thymine (Thy), 35.74; Uracil (Ura), 68.62; Hypoxanthine (Hxn), 13.06; Xanthine (Xn), 8.35. Total purine-N content (g/kg N) of rumen micro-organisms were 99.60. The nucleic acid N content (g/kg N) of microbial isolates were: RNA-N, 109.9; DNA-N, 50.9.

Metabolic Role of Glyoxylate on the Biosynthesis of Serratia marcescens Purine Nucleoside Phosphorylase (Serratia marcescens Purine Nucleoside Phosphorylase의 생합성에 대한 글리옥실산의 대사적 역할)

  • 방선권
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • The effects of purine catabolites in growth media on the Serratia marcescens purine nucleoside phos-phorylase activity were examined. The enzyme activity was decreased above 60% by guanosine(5 to 15mM). The enzyme activity was not affected at low concentration of inosine (0.1∼1mM). The en-zyme activity was decreased approximately by 40∼50% in the presence of high concentrations of aden-osine hypoxanthine and xanthine (5∼15mM) but was not affected at low concentration of adenosine hypoxanthine and xanthine (0.1∼0.5mM). However the enzyme activity was increase by 20% with low concentrations of uric acid(0.5mN). but was decreased by 80% with high concentrations of same purine catabolite (15mM). Also the enxzyme activity was increased by 20% with low concentrations of glyoxylate (0.5mM) final degradative product of uric acid but was decreased by 30∼50% with high con-centrations of glyoxylate (3∼15mM). The enzyme activity was decreased approximately by 20% by the simultaneous addition of inosine hypoxanthine and uricacid at 5mM each whereas it was increased by 22 and 33% by the combination of inosine and uric acid three purine catabolites at 0.5mM respectively These data suggest that S. marcescens purine nucleoside phosphorylase is positively regulated by a glyox-ylate concentration and then may play a regulatory role in a purine catabolism.

  • PDF

Synthesis and Biological Activity of 6-Substituted-2-Oxo-Purine Nucleosides

  • Lee, Sang-Jun;Kim, Jong-Bae;Cho, Young-Ho;Kim, Jung-Han
    • Archives of Pharmacal Research
    • /
    • v.17 no.3
    • /
    • pp.170-174
    • /
    • 1994
  • We have synthesized various 6-substituted 2-oxo-purine nucleosides from key intemediate, 6-[(4-methylphenylthio)-2-oxo-9(2, 3, 5tri-o-acetyl-$\beta$-D-ribofuanoslyl)]-2, 3- dihydropurine in relatively high yields by one step nucleophilic substitution. Various isoguanosine, xanthosine analogs and other 2-oxo-purine nucleosides containing nitrogen, sulfur and oxygen at C-6 of purine base were easily obtained by this method. The structures of the products were established on the basis of their spectral data studies. And cytotoxicity of resulting synthetic 6-substituted-2-oxo-purine nucleosides against some tumor cell-lines was examined. $Ed_{50}$ values of these synthetic compounds were above $100\;{\mu}g/ml$ except isoguanosine, $N^6$-methyl isoguanosine and thioxanthosine analogs.

  • PDF

Effect of Ruminal NH3-N Levels on Ruminal Fermentation, Purine Derivatives, Digestibility and Rice Straw Intake in Swamp Buffaloes

  • Wanapat, M.;Pimpa, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.904-907
    • /
    • 1999
  • The experiment was aimed at studying the effect of ruminal $NH_3-N$ levels on ruminal fermentation, microbial population, urinary purine derivative excretion, digestibility and rice straw intake in swamp buffaloes. Five, 3 to 4 years old, rumen fistulated swamp buffaloes were randomly assigned according to a $5{\times}5$ Latin square design to rceive five different intraruminal infusions of $NH_4HCO_3$ (0, 150, 300, 450 and 600 g/d) on a continuous daily basis. Rice straw as a roughage was offered ad libitum while concentrate was given at 0.8% BW daily. The results were that as levels of $NH_4HCO_3$ increased, ruminal $NH_3-N$ concentrations increased from 7.1 to 34.4 mg%. The highest digestibility and voluntary straw intakes were found at 13.6 to 17.6 mg% ruminal $NH_3-N$ levels; straw intake was highest at 13.6 mg%. Total bacterial and protozoal counts linearly increased as the ruminal $NH_3-N$ increased and were highest at 17.6 mg%. Total urinary purine derivatives and allantoin excretion were highest (44.0, 37.4 mM/d) at 17.6 mg% ruminal $NH_3-N$. Highest total VFAs (115 mM) were obtained a 13.6 mg% ruminal $NH_3-N$ while blood urea nitrogen significantly increased as ruminal $NH_3-N$ increased. The results from this experiment suggest that optimum ruminal $NH_3-N$ in swamp buffaloes is higher than 13.6 mg%, for improving rumen ecology, microbial protein synthesis, digestibility and straw intake.

Synthesis and Quartemization of 6-(Substitutedamino)-Purines with Antitumor Activity Screening

  • El-Bayouki, Khairy-A.M.;Basyouni, Wahid-M.;El-Din, S.M.;Habeeb, A.G.
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.60-65
    • /
    • 1994
  • Reaction of c-chloro-9-benzyl-8-(methylthio)purine 3 with primary amines afforoded, the comesponding 6-(substitutedamino)purines 4a-g. The latter products when methylated with methyl iodide yielded smoothly $N^3$-methyl purinium iodide salts 5a-f rather than the probable $N^1\;and\;N^7$-derivatives. 9-Benzyl-3-methyl-6-(methylmino)-8-(methylthio)purine 8 was obtained upon treating the purinium iodide 5a with alkali. Most of the synthesized compounds were screened for their antitumor activity.

  • PDF

Effect of Rumen Degradable Protein (RDP) in Straw Based Ration on Purine Derivatives Excretion and Microbial Nitrogen Supply in Cattle

  • Khandaker, Z.H.;Tareque, A.M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.364-370
    • /
    • 1997
  • Four local cattle were ($145{\pm}9.7kg$) used in a $4{\times}4$ Latin square design to study the effect of different levels of rumen degradable protein (RDP) in straw based ration on purine derivatives excretion and microbial N supply in cattle. The four rations were formulated at the same amount of energy but varying RDP approximately 50 (U0), 75 (U1), 100 (U2) and 150 (U3) percent levels of RDP requirement for maintenance. They were fed ranged from 101 to 304 g RDP/d. Apparent digestibility of all nutrients increased significantly (p < 0.01) in cattle fed ration U2 than other rations. Rumen $NH_3-N$ concentration increased from 43 to 130 mg/l in response of RDP intake. Purine derivatives excretion increased significantly (p < 0.01) with incremental level of 203 g RDP/d (U2) intake and positively correlated (r=0.69, p < 0.01, n=16) with amount of RDP intake. The rates of rumen microbial N supply were 16.8, 27.2, 39.1 and 32.9 g/d for rations U0, U1, U2 and U3 respectively. Efficiency of microbial N supply (EMNS) per kg of DOMR were 19.0, 25.3, 33.0, and 28.6 g and per MJ of ME. Intake were 0.62, 1.00, 1.44 and 1.21 g for U0, U1, U2 and U3 respectively and highest results were obtained in cattle fed U2 ration. Results of this study suggest that PD excretion and EMNS were increased as incremental level of RDP intake (U2) in local cattle.

Catalytic mechanism and inhibition studies of purine nucleoside phosphorylase (PNP) in micrococcus luteus

  • Choi, Hye-Seon
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.15-20
    • /
    • 1997
  • Kinetic studies were done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Micrococcus Luteus. PNP catalyzes the reversible phosphorolysis of ribonucleosides to their respective base. The effect of alternative competing substrates suggested that a single enzyme was involved in binding to the active site for all purine nucleosides, inosine, deoxyiosine, guanosine, deoxyguanosine, adenosine and deoxyadenosine. Affinity studies showed that pentose moiety reduced the binding capacity and methylation of ring N-1 of inosine and guanosine had little effect on binding to bacterial enzyme, whereas these compounds did not bind to the mammalian enzymes. The initial velocity and product inhibition studies demonstrated that the predominant mechanism of reaction was an ordered bi, bi reaction. The nucleoside bound to the enzyme first, followed by phosphate. Ribose 1-phosphate was the first product to leave, followed by base.

  • PDF

Measurement of Microbial Protein Supply in Murrah Buffaloes (Bubalus bubalis) Using Urinary Purine Derivatives Excretion and PDC Index

  • Dipu, M.T.;George, S.K.;Singh, P.;Verma, A.K.;Mehra, U.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.347-355
    • /
    • 2006
  • A study was conducted to predict the rumen microbial protein production based on urinary excretion of purine derivatives in buffaloes fed a diet of wheat straw and concentrate (40:60) at four fixed levels of feed intake. (95, 80, 60 and 40% of preliminary voluntary feed intake) following experimental protocol of IAEA (Phase I). The buffaloes were allocated according to a $4{\times}4$ latin square design. The urinary allantoin, uric acid, total PD excretion (mmol/d) in treatments L-95, L-80, L-60 and L-40 was 20.13, 16.00, 12.96 and 9.17; 1.88, 2.12, 2.11 and 2.15; 22.01, 18.12, 15.07 and 11.32, respectively and were significantly (p<0.05) different among treatments except for uric acid. The rate of PD excretion (mmol/d) was positively correlated with the digestible organic matter intake. Variations were observed in PD and creatinine concentration in spot samples collected at 6-hour interval. However, daily PD:Creatinine ratio (PDC index) appears to be a reasonably good predictor of microbial-N supply. The contribution of basal purine excretion to total excretion of purine derivatives (PD) was determined in pre-fasting period followed by a fasting period of 6 d (Phase II). Daily PD and creatinine excretion (mmol/kg $W^{0.75}$) during fasting averaged 0.117 and 0.456 respectively for buffaloes. The excretion rates of PD decreased significantly (p<0.01) during fasting compare to pre-fasting period, the urinary creatinine excretion remained almost similar. Except for creatinine, plasma concentration of target parameters significantly (p<0.01) declined during fasting. Likewise, glomerular filtration rate (GFR) and renal clearance of allantoin and uric acid also decreased. Based on the PD excretion rates during fasting and at different levels of feed intake obtained in this study, a relationship between daily urinary PD excretion (Y-mmol) and microbial purine absorption (X-mmol) was developed for buffaloes as Y = 0.74X+0.117 kg $W^{0.75}$. The microbial N supply (g/kg DOMI) remained statistically similar irrespective of dietary treatment. The results showed that excretion of urinary purine derivatives is positively correlated with the levels of feed intake in Murrah buffaloes and thus, estimation of urinary purine derivatives and PDC index could be used to determine microbial nitrogen supply when there is large variation in level of feed intake.