• Title/Summary/Keyword: Pure shear strength

Search Result 102, Processing Time 0.031 seconds

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating (건식 접착 구조물의 금속 코팅 두께에 따른 접착강도 변화)

  • Kim, Gyu Hye;Kwon, Da Som;Kim, Mi Jung;Kim, Su Hee;Yoon, Ji Won;An, Tea Chang;Hwang, Hui Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.673-677
    • /
    • 2016
  • Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

THE EFFECT OF CYANATE METHACRYLATE ON THE SHEAR BOND STRENGTHS TO DENTIN (Cyanate methacrylate가 상아질 결합강도에 미치는 영향)

  • Kim, Hyang-Kyung;Choi, Kyung-Kyu;Choi, Gi-Woon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.236-247
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of cyanate methacylate on the shear bond strengths to bovine dentin surfaces as a dentin primers. Seven experimental adhesives were made with different mass fraction of Isocyanatoetylme-thacrylate (IEM), 40wt% HEMA (Wako Pure Chemical Industries Osaka, Japan), 0.6% camphoroquinone, 0.4% amine and ethanol as balance dentin bonding agents (0, 2, 4, 6, 8, 10, 12%) were made and applied on the surface of bovine dentin specimens of 7 experimental groups. Shear bond strengths were measured using a universal testing machine (Instro 4466). To identify the ratio and modes of cohesive failures, microscopic examinationn was performed. The ultra-structure of resin tags were observed under scanning electron microscope. The results were as follows ; 1) A higher shear bond strengths (33.62 MPa) in group 8% of Cyanate methacrylate to dentin were found, but there were no statistically significancy between Groups (p > 0.05). 2) The higher ratio of cohesive failures mode in group 2, 6, an 10% could be seen than that in any other groups. 3) A shorter resin tags were observed in all experimental groups. This could be resulted that the preventing from the cyanate methacrylate penetrate into dentin owing to reacting it with dentin collagen. Therefore the resin tags were shorter in lengths. Whether the higher bonding strengths of dentin bonding agents can be affected was not been assured with statistic results. The results indicated that the relation between tensile strengths of the dentin adhesives to bovine dentin and resin tags formed into the dentin could not affected. The main reason of increasing the shear bond strength to bovine dentin in experimental groups could not be assured.

Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths (다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure (Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술)

  • Choi, Jinseok;An, Sung Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption (전자기파 흡수용 복합재료의 기계적 강도평가)

  • 오정훈;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

An Experimental Studies on the Fatigue Behavior of Preflex Girder (프리플렉스형의 피로거동에 관한 실험적 고찰)

  • CHANG, Dong Il;Lee, Myeong Gu;LEE, Seung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.107-116
    • /
    • 1996
  • The studies are conducted to investigate the fatigue and fracture, behavior of preflex girder. In this work, the fatigue tests using by constant amplitude fatigue loading and 4-point-loading to maintain pure bending condition in the mid-span of preflex girder will be performed. It is expected from the results of the studies to provide the fatigue strength and the S-N curve of preflex girders. In addition, it will be ensured that fracture initiation occurs in the welded part of horseshoe-type shear connector as well as in other welded joints.

  • PDF

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.

Implementation of Dynamic Resistance Database for Weld Quality Improvement of Inverter Spot Welder (인버터 스폿용접기의 용접품질 향상을 위한 동저항 데이터베이스 구축)

  • 김재문;원충연;최규하;김규식;목형수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.294-303
    • /
    • 1999
  • Resistance spot welding is commonly used for welding products of high quality because of clean welding and short w welding-time. But. conventional spot welders bring about the depreciation of welding products, iuespective of dynamic r resistance characteristics during welding time. This paper discussed dynamic resistance database implementation in t terms of welding performance improvement. On different welding conditions, we compared dynamic resistance, r respectively, about pure iron and Sn-Pb alloy on Copper. Also, it investigated the relation of tensile shear strength and d dynamic resistance in welded workpiece.

  • PDF