• Title/Summary/Keyword: Punching order

Search Result 68, Processing Time 0.028 seconds

Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process (블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구)

  • Kim, T.H.;Lee, K.S.;Kim, J.H.;Moon, Y.H.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.

Precision measuring of burrs on sheet metal using the laser (레이저를 이용한 박판 버의 정밀측정)

  • 신홍규;홍남표;김헌영;김병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1824-1827
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. The laser burr measuring system consists of the laser probe, the photo detector, the achromatic doublet lens, and the rotary & the X-Y table. In previous reports, we used simple vertical measuring method. But, as we used relatively bigger laser spot diameter and had the limited reflection angle, it was difficult to obtain the precise measuring results. So called, the spot size effect makes the profile of burr measured distorted and the burr height measured smaller. By introducing the novel laser measuring method which employing the achromatic lens system and the tilting mechanism, we could make the spot size smaller and get the appropriate beam direction angle. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System (Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구)

  • Choi, Kyung-Jin;Lee, Young-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.

A Study on the tension of Geogid on Pile-supported Construction Method (성토지지말뚝공법 중 섬유보강재의 인장력 검토에 관한 연구)

  • Moon, In-Ho;Park, Jong-Gwan;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.905-917
    • /
    • 2008
  • Road or Railway construction over soft ground is needed to be considered on secondary consolidation which will be caused differential settlement, lack of transport serviceability, higher maintenance cost. Especially for the railway construction in the second phase of Gyung-Bu or Ho-Nam high speed railway, concrete slab track has been adapted as a safe and cost effective geotechnical solution. In this case controlling the total settlement under the tolerance is essential. And pile supported geogrid reinforced construction method is suggested as a solution for the problem of the traditional method on soft soil treatments. Pile supported geogrid reinforced construction method consists of piles that are designed to transfer the load of the embankment through the compressible soil layer to a firm foundation. The load from the embankment must be effectively transferred to the piles to prevent punching of the piles through the embankment fill creating differential settlement at the surface of the embankment. The arrangement of the piles can create soil arching to carry the load of embankment to the piles. In order to minimize the number of piles geogrid reinforced pile supported construction method is being used on a regular basis. This method consists of one or more layers of geogrid reinforcement placed between the top of the piles and the bottom of the embankment. This paper presents several methods of pile supported geogrid reinforced construction and calculation results from the several methods and comparison of them.

  • PDF

A Study on the Characteristics of the Manufacturing Method of Handbags by Brand

  • Youshin Park
    • Journal of Fashion Business
    • /
    • v.27 no.6
    • /
    • pp.66-84
    • /
    • 2023
  • Handbags are a part of fashion and while their significance and value are increasing, research on this topic is lacking. This study defines handbags and categorizes the materials used for making handbags, sewing methods, expression techniques, and terminologies related to accessories. A total of 1,743 handbags that were released from the Spring 2020 to Fall 2023, Ready-to-Wear collections by 8 selected brands (Hermes, Dior, Fendi, Chanel, Louis Vuitton, Prada, Gucci, and Alexander McQueen), were analyzed. Out of these, 732 unique designs, excluding those with only color variations, were studied. The most common sewing methods were 'Cut, sewing, and edge painting', 'Cylinder arm sewing', 'Cut, edge painting, and sewing', and 'Inverted seam', in that order. Slim strap designs primarily used the 'Cut, sewing, and edge painting' method, whereas the body, especially with narrow and hard leather, was best suited for the 'Cylinder arm sewing machine'. For expression techniques, the most frequently used methods were 'Quilting', 'Metal Eyelet', 'Embossing', 'Printing', 'Punching', and 'Weaving', respectively. The characteristics of each brand's production methods, expression techniques, and accessories were as follows: First, the exposure of logos and monograms is prominent. Unlike clothing, handbags often prominently feature the brand's logo or monogram. Second, signature quilting is a prominent feature. Quilting effectively conveys the brand's signature style, providing cushioning, volume, and pattern effects. Third, sustainable development is a growing trend. Brands are increasingly applying eco-friendly and socially responsible designs.

Theoretical Analysis of Embankment Loads Acting on Piles (성토지지말뚝에 작용하는 연직하중의 이론해석)

  • 홍원표;이재호;전성권
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • Several theoretical analyses are performed to predict the vertical load on embankment piles with cap beams. The piles are installed in a row in soft ground below the embankment and the cap beams are placed perpendicular to the longitudinal axis of the embankment. Two failure mechanisms such as the soil arching failure and the punching shear failure are investigated according to the failure pattern in embankment on soft ground supported by piles with cap beams. The soil arching can be developed when the space between cap beams is narrow and/or the embankment is high enough. In the investigation of the soil arching failure, the stability in the crown of the arch is compared with that above the cap beams. The factors affecting the load transfer in the embankment fill by soil arching are the space between cap beams, the width of cap beams and the soil parameters of the embankment fill. The portion of the embankment load carried by cap beams decreases with increment of the space between cap beams, while it increases with the embankment height, the width of cap beams, the internal friction angle and cohesion of the embankment fill. Thus, the factors affecting load transfer in embankment should be appropriately decided in order to maximize the effect of embankment load transfer by piles.

  • PDF

Characteristics of wave propagation in a sloping-wall-type wave absorber

  • Zhu, Lixin;Lim, Hee Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.843-848
    • /
    • 2015
  • The objective of this study is to observe and optimize a typical ocean environment and reduce wave reflections in the wave flume. In order to generate ocean waves in the wave flume, a combination of a horizontal piston type wave generator and wave absorbers was installed in the channel. Two probes for measuring the wave heights, i.e., wave level gauges, were used to record the continuous variation of the wave surface, the phase difference, and the maximum (crest) and minimum (trough) points of the propagating waves. In order to optimize the shape and size of the propagating waves, several absorption methods were proposed. Apart from an active wave absorption method, we used methods that involved vertical porous plates, horizontal punching plates, and sloping-wall-type wave absorbers. To obtain the best propagating waves, a sloping-wall-type wave absorber was chosen and tested in terms of the constitutive filling materials and the location and shape of the plate. This study also focused on the theoretical prediction of the wave surface, separating them into the incident and reflective components. From the results, it is evident that the wave absorber comprising a hard filling material exhibits a better performance than the absorber comprising a soft material, i.e., the wave absorber can be a strong sink to control the energy of the incoming wave. In addition, larger wave absorbers correspond to lower reflectance because a larger volume can reduce the incoming wave energy. Therefore, at constant absorber conditions, the reflectance of the wave increases as the wave period increases. Finally, the reflectance of the wave was controlled to be less than 0.1 in this study so that the wave flume can be used to simulate an offshore environment.

Experimental Study on the Buckling Behavior of Cold-formed Steel Warren Truss (냉간성형강 평트러스 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.747-754
    • /
    • 2002
  • Cold-formed steel truss system was reviewed in order to improve the various problems associated with the steel floor joist system, such as the structural deficiency caused by web punching and others. Two types of floor truss system using cold-formed steel were reviewed during this research project, including the square end type(SE type) and underslung type(EE type). The strctural behavior was analyzed using the AISI design criteria and various bending tests. Test results show that the SE type floor truss proved to be more efficient than the EE type when it is subjected to concentrated load, and that the unbraced length of the floor truss about the weak axis has much importance on the buckling strength of the floor truss. Test results indicate that their values surpass the calculated values predicated through the AISI design criteria.

Study on Behavior of Failure of Footing through Numerical Analysis (수치해석을 통한 기초지반의 파괴거동 고찰)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2212-2218
    • /
    • 2015
  • In order to find out the load bearing behavior of sand and clay which sustain three types of shallow footing, finite element analyses were performed. Failure zone of sand which sustain strip footing was affected by relative density of sand whereas, failure zone of clay was not affected by soil strength and it was similar to the failure zone which is considered in theory. Considering the shape of load-settlement curves obtained by numerical analyses, punching shear failure can be seen in loose sand and ultimate bearing load can not be seen in dense sand whereas, yielding point can be seen in clay. Ultimate bearing loads for sand predicted by theory were greater than those obtained by numerical analyses and ultimate bearing loads for clay predicted by theory were similar to those of numerical analyses. Ultimate bearing loads determined by 1 inch settlement criteria were slightly less than those of numerical analyses.

Modification of Linear Polyphenylene Sulfide with Functional Elastomers and Its Properties (기능성 엘라스토머를 이용한 선형 폴리페닐렌 설파이드의 개질 및 그 특성)

  • Kim, Sungki;Hong, In-Kwon;Lee, Sangmook
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.399-404
    • /
    • 2013
  • In order to develop the blends with good long-term thermal stability and tensile elongation, the blends of polyphenylene sulfide (PPS) and 7 kinds of elastomer were tested. PPS/elastomer (90/10, 80/20, 70/30) blend samples were prepared by compression molding after twin screw extrusion or punching after sheet extrusion. Rheological, mechanical property and morphology of the blends were analyzed by capillary rheometer, UTM, impact tester, and SEM. For long-term thermal stability tests, the mechanical properties were measured again after the samples were stored in a convection oven for a week. The tensile strengths were almost same regardless of kinds of elastomer and the tensile elongation was the maximum for the PPS/m-EVA blend. As the content of elastomer increased, the elongation increased but delamination occurred at 30 wt% of elastomer content. The tensile strength increased but the elongation decreased seriously after thermal aging. Many problems related with PPS processing could be solved by adding a small amount of the elastomers partially compatibile with PPS and it would be applicable to develop various PPS grades.