Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.3.399

Modification of Linear Polyphenylene Sulfide with Functional Elastomers and Its Properties  

Kim, Sungki (SK Chemicals R&D Center)
Hong, In-Kwon (Division of Chemical Engineering, Dankook University)
Lee, Sangmook (Division of Chemical Engineering, Dankook University)
Publication Information
Polymer(Korea) / v.37, no.3, 2013 , pp. 399-404 More about this Journal
Abstract
In order to develop the blends with good long-term thermal stability and tensile elongation, the blends of polyphenylene sulfide (PPS) and 7 kinds of elastomer were tested. PPS/elastomer (90/10, 80/20, 70/30) blend samples were prepared by compression molding after twin screw extrusion or punching after sheet extrusion. Rheological, mechanical property and morphology of the blends were analyzed by capillary rheometer, UTM, impact tester, and SEM. For long-term thermal stability tests, the mechanical properties were measured again after the samples were stored in a convection oven for a week. The tensile strengths were almost same regardless of kinds of elastomer and the tensile elongation was the maximum for the PPS/m-EVA blend. As the content of elastomer increased, the elongation increased but delamination occurred at 30 wt% of elastomer content. The tensile strength increased but the elongation decreased seriously after thermal aging. Many problems related with PPS processing could be solved by adding a small amount of the elastomers partially compatibile with PPS and it would be applicable to develop various PPS grades.
Keywords
polyphenylene sulfide; elastomer; thermal stability; elongation; blends;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.I. du Pont de Nemours and Company, U.S. Patent 6,805,956 B2 (2004).
2 Hoechst Celanese Corporation, U.S. Patent 5,300,362 (1994).
3 R. Hiroi and H. Tanaka, Designed Monomers and Polymers, 14, 251 (2011).   DOI
4 H. T. Oyama and M. Matsushita, Polym. J., 43, 991 (2011).   DOI
5 D. Lu, Y. Yang, G. Zhuang, Y. Zhang, and B. Li, Macromol. Chem. Phys., 202, 734 (2001).   DOI
6 T. Hisamatsu, S. Nakano, T. Adachi, M. Ishikawa, and K. Iwakura, Polymer, 41, 4803 (2000).   DOI   ScienceOn
7 J. Masamoto and K. Kubo, Polym. Eng. Sci., 36, 265 (1996).   DOI
8 W. Tang, X. Hu, J. Tang, and R. Jin, J. Appl. Polym. Sci., 106, 2648 (2007).   DOI   ScienceOn
9 A. Arostegui and J. Nazabal, Polym. Adv. Technol., 14, 400 (2003).   DOI   ScienceOn
10 N. Hasegawa, H. Okamoto, and A. Usuki, J. Appl. Polym. Sci., 93, 758 (2004).   DOI   ScienceOn
11 D. Mader, Y. Thomann, J. Suhm, and R. Mulhaupt, J. Appl. Polym. Sci., 74, 838 (1999).   DOI
12 A. Arostegui, M. Gaztelumendi, and J. Nazabal, Polymer, 42, 9565 (2001).   DOI   ScienceOn
13 A. Arostegui and J. Nazabal, Polym. Eng. Sci., 43, 1691 (2003).   DOI   ScienceOn
14 J. Liu, W. Yu, and C. Zhou, Polymer, 49, 268 (2008).   DOI   ScienceOn
15 J. Liu, W. Yu, C. Zhao, and C. Zhou, Polymer, 48, 2882 (2007).   DOI   ScienceOn
16 E. Nemeth, V. Albrecht, G. Schubert, and F. Simon, Journal of Electrostatics, 58, 3 (2003).   DOI   ScienceOn
17 N. Papke and J. Karger-Kocsis, Polymer, 42, 1109 (2001).   DOI   ScienceOn
18 D. E. Mouzakis, N. Papke, J. S. Wu, and J. Karger-Kocsis, J. Appl. Polym. Sci., 79, 842 (2001).   DOI
19 G. Guerrica-Echevarria, J. I. Eguiazabal, and J. Nazabal, Polym. Eng. Sci., 46, 172 (2006).   DOI   ScienceOn
20 A. Nakayama, H. Kimura, K. Watanabe, Y. Kondo, Y. Ota, and S. Iwata, Hitachi Cable Review, 18, 67 (1999).
21 H. Kimura, K. Watanabe, H. Nakashima, and Y. Inaba, Hitachi Cable Review, 20, 79 (2001).
22 M. Junzo, N. Tetsuo, and K. Kimihiro, U.S. Patent 5,191,020 (1993).
23 K. Kubo and J. Masamoto, J. Appl. Polym. Sci., 86, 3030 (2002).   DOI   ScienceOn
24 T. Rath, S. Kumar, R. N. Mahaling, and C. K. Das, J. Appl. Polym. Sci., 106, 3721 (2007).   DOI   ScienceOn