• Title/Summary/Keyword: Punching

Search Result 427, Processing Time 0.027 seconds

Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement

  • Derogar, Shahram;Ince, Ceren;Mandal, Parthasarathi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.203-215
    • /
    • 2018
  • A large body of experiments have been conducted to date to evaluate the punching shear strength of flat slab-column connections, but it is noted that only a few of them have been considered for the development of the ACI Code provisions. The limited test results used for the development of the code provisions fall short of predicting accurately the punching shear strength of such connections. In an effort to address this shortfall and to gain an insight into the factors that control the punching shear strength of flat slab-column connections, we report a qualified database of 650 punching shear test results in this article. All slabs examined in this database were tested under gravity loading and do not contain shear reinforcement. In order to justify including any test result for evaluation punching shear database, we have developed an approved set of criteria. Carefully established set of criteria represent the actual characteristics of structures that include minimum compressive strength, effective depths of slab, flexural and compression reinforcement ratio and column size. The key parameters that significantly affect the punching shear strength of flat slab-column connections are then examined using ACI 318-14 expression. The results reported here have paramount significance on the range of applicability of the ACI Code provision and seem to indicate that the ACI provisions do not sufficiently capture many trends identified through regression of the principal parameters, and fall on the unsafe side for the prediction of the punching shear strength of flat slab-column connections.

Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement

  • Hafidi, Mariam;Kharchi, Fattoum;Lefkir, Abdelouhab
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.679-700
    • /
    • 2013
  • Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

Punching Shear Strength in Thick Slabs (Thick Slab의 펀칭전단강도)

  • Kim, Woo;Kim, Dae-Joong;Lee, Jee-An
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.47-52
    • /
    • 1994
  • In designing of slabs, a prediction of the punching shear capacity is one of important concerns. In this study, an equation was proposed to predict the punching shear strength of reinforced concrete slabs. The proposed equation depends on concrete compression strength, steel ratio, effective depth and slab radial length. The good correlation exists between the predicted punching shear strength and the measured.

  • PDF

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Experimental Study of Wave-Absorbing Performance by Horizontal Punching Plates (수평형 타공판에 의한 소파성능의 실험적 연구)

  • Jung H. J.;Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.40-48
    • /
    • 1999
  • Wave absorbing system is needed at various kinds of wave basins (wave flume, towing tank, square tank) for the model test related to the ocean engineering. In this paper, the performance of wave absorbing system with new concept is estimated throughout the experiments. Herein, the wave absorbing system is designed by punching plate with a given porosity which is installed horizontally and submerged near the water surface. As the incident wave generated by a wave maker advances above a punching plate, the strong jet flow is formed near a hole of punching plate. As a result, wave energy is dissipated into heat energy, Systematic model tests were conducted at KRISO to verify the performance of the wave absorber using a punching plate. It was found that the reflection coefficient of wave absorber is deeply dependent on both the porosity and the submerged depth of a punching plate. Inclined installation of a punching plate shows better performance than a horizontal one within a certain inclined angle.

  • PDF

Strength Model for Punching Shear of Flat Plate-Column Connections (플랫플레이트-기둥 접합부의 뚫림전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.163-174
    • /
    • 2004
  • A number of experiments were performed to investigate the punching shear strength of flat plate-column connections. According to the experiments, the punching shear strength varies significantly with design parameters such as the column size of the connection, reinforcement ratio, and boundary condition. However, current design methods do not properly address the effects of such design parameters. In the present study, a theoratical approach using Rankine's failure cirterion was attempted to define the failure mechanism of the punching shear According to the study, the failure mechanism can be classified into the compression-controlled and the tension-controlled, depending on the amount of bottom re-bars placed at the connection, and the punching shear strength is also significantly affected by the flexural damage of slab. Based on the finding, a new strength model of punching shear was developed, and verified by the comparisons with existing experiments and nonlinear finite element analyses. The comparisons show that the proposed strength model addressing the effects of various design parameters can predict accurately the punching shear strength, compared to the existing strength models.

Assessment of design methods for punching through numerical experiments

  • Kotsovou, Gregoria M.;Kotsovos, Gerasimos M.;Vougioukas, Emmanuel
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.305-322
    • /
    • 2016
  • The work is intended to demonstrate that the loss of bond between concrete and flexural steel which led in recent years a number of flat-slab structures to punching collapse under service loading conditions is also relevant to ultimate limit-state design. It is based on a comparative study of the results obtained from numerical experiments on flat slab-column sub-assemblages. The slabs were designed for punching either in compliance with the EC2 code requirements, which do not allow for such loss of bond, or in accordance with the compressive force-path method which considers the loss of bond between concrete and the flexural reinforcement in tension as the primary cause of punching. The numerical experiments are carried out through the use of a nonlinear finite element analysis package for which, although ample published evidence of its validity exists, additional proof of its suitability for the purposes of the present work is presented.

Structural Behavior in Slab-Column Connections with Shear Plate Using Structural Experiment and Non-destructive Test, Spectral Analysis of Surface Waves (구조 실험과 SASW를 이용한 플랫 플레이트 기둥-슬래브접합부에서의 구조적 거동에 관한 연구)

  • Joo, Hyun-Jee;Cho, Young-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.48-51
    • /
    • 2004
  • This paper is to study the response of flat plate slab-column connections consisting of various types of shear reinforcement and steel plate subjected to gravity loadings, mainly punching shear forces using the non-destructive testing, spectral analysis of surface waves and structural experiments. The base specimen failed due to punching shear generated from the gravity. The three other types of slab shear reinforcement and steel plate showed effective in resisting punching shear for these types of connections under gravity loading. This study has focused in evaluating the velocity response of a Surface wave during the early age as the poured concrete specimens have been hardened, the possibility of damage detection in the slab-column connection and the relationship between the punching shear forces and the surface wave velocities under the condition that the punching shear forces had gradually increased until the flat plate slab in slab-column connection had been failed.

  • PDF

Development of Micro Punching System (미세 구멍 펀칭 기구 개발)

  • Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.213-216
    • /
    • 2001
  • A micro hole punching system was developed and micro holes of 100m in diameter were successfully made on brass sheets of loom in thickness. A micro punch made of tungsten carbide was designed to withstand the punch load, considering the buckling and the bending moment due to possible misalignment error. The punch was fabricated by the grinding process with diamond wheel. The die was designed considering the punch load and fabricated by micro electrodischarge machining process. In this system the stripper is designed to guide punch tip to minimize the possible misalignment. The punch was installed on a vertical stepper and the die was mounted on an X-Y translation unit. The precision motion controller controlled all motions of the micro hole punching system. In this study technical difficulties and solutions in the micro hole punching process were also discussed.

  • PDF