• Title/Summary/Keyword: Punch test

Search Result 274, Processing Time 0.027 seconds

Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile (자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구)

  • 허영민;박동환;강성수
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Study on the forming Limit Diagram of Steel Sheets for the Oil Pan of Automobile at the Warm Forming Condition (오일팬용 재료의 온간 성형한계도에 관한 연구)

  • 이항수;오영근;최치수
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.670-680
    • /
    • 2000
  • The purpose of this study is to provide the database of forming limit diagram applicable to the warm forming of oil pan. The test materials are SCP1 and SCP3C with the thickness of 1.4mm which is used for the oil pan of automobile. The testing temperature is 5$^{\circ}C$~15$0^{\circ}C$ which is In the range of practical usage. The results are the forming limit diagram limiting dome height and the maximum punch load at each temperature such as 5$^{\circ}C$, $25^{\circ}C$, 6$0^{\circ}C$, 9$0^{\circ}C$, 12$0^{\circ}C$ and 15$0^{\circ}C$. From these results, we can see that the forming limit curves are translated depending upon the temperature and that FLC at low temperature is higher than at high temperature. Both of limiting dome height and maximum punch load also decrease as the temperature increases. Present results can be useful for die trial and forming analysis as a tool of evaluating the forming severity for the sheet metal forming processes at the warm working condition by comparing the practical strains with FLC.

  • PDF

Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel (P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석)

  • Kim, Bum-Joon;Kim, Moon-K;Dung, Hoang Tien;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

Penetration Behavior of Jack-up Leg with Spudcan for Offshore Wind Turbine to Multi-layered Soils Using Centrifuge Tests

  • Min Jy Lee;Yun Wook Choo
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.30-42
    • /
    • 2024
  • This study examined the jack-up spudcan penetration for a new type of offshore wind substructure newly proposed using the jack-up concept to reduce construction costs. The jack-up spudcan for offshore wind turbines should be designed to penetrate a stable soil layer capable of supporting operational loads. This study evaluated multi-layered soil conditions using centrifuge tests: loose sand over clay and loose sand-clay-dense sand. The penetration resistance profiles of spudcan recorded at the centrifuge tests were compared with the ISO and InSafeJIP methods. In the tests, a spudcan punch-through effect slightly emerged under the sand-over-clay condition, and a spudcan squeezing effect occurred in the clay-over-sand layer. On the other hand, these two effects were not critically predicted using the ISO method, and the InSafeJIP result predicted only punch-through failure. Nevertheless, ISO and InSafeJIP methods were well-matched under the conditions of the clay layer beneath the sand and the penetration resistance profiles at the clay layer of centrifuge tests. Therefore, the ISO and InSafeJIP methods well predict the punch-through effect at the clay layer but have limitations for penetration resistance predictions at shallow depths and strong stratum soil below a weak layer.

Small Punch Test for the Evaluation of Thermal Aging Embrittlement of CF8 Duplex Stainless Steel

  • Cheon, Jin-Sik;Kim, In-Sup;Jang, Jae-Gyoo;Kim, Joon-Gu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.79-84
    • /
    • 1996
  • Small punch test was performed on CF8 duplex stainless steel aged at 370 and 400$^{\circ}C$ up to 5,000 h to evaluate the degree of the thermal aging embrittlement. At room temperature, the SP load-displacement curve was in a similar shape to those of ferritic steels and had a good reproducibility in spite of two-phase structure. The aging heat treatment resulted in a slight increase of the yield strength. As test temperature was lowered, the SP load showed a sudden drop followed by serrations before the SP specimen was fractured, resulting from the cracking of ferrite phase. The extent of thermal embrittlement was assessed in terms of the SP energy. Aging treatment at higher temperature led to a larger shift in the transition temperature and the corresponding change in the fracture mode. The main cause of the degradation was the embrittlement of ferrite phase. Additionally the phase boundary separation profoundly contributed to the degradation of the specimen aged at 400$^{\circ}C$.

  • PDF

A Study on Plastic Deformation Characteristics and Formability for Pure Titanium Sheet (순 티타늄 판재의 변형 특성 및 성형성 평가)

  • In, J.H.;Jeong, K.C.;Lee, H.S.;Kim, J.H.;Kim, J.J.;Kim, Young Su
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.301-313
    • /
    • 2018
  • In this paper, tensile test was performed on pure titanium sheet (CP Ti sheet) with HCP structure in each direction to evaluate mechanical and surface properties and analyze microstructural changes during plastic deformation. We also evaluated forming limits of Ti direction in dome-type punch stretching test using a non-contact three-dimensional optical measurement system. As a result, it was revealed the pure titanium sheet has strong anisotropic property in yield stress, stress-strain curve and anisotropy coefficient according to direction. It was revealed that twinning occurred when the pure titanium sheet was plastic deformed, and tendency depends differently on direction and deformation mode. Moreover, this seems to affect the physical properties and deformation of the material. In addition, it was revealed the pure titanium sheet had different surface roughness changes in 0 degree direction and 90 degree direction due to large difference of anisotropy, and this affects the forming limit. It was revealed the forming limit of each direction obtained through the punch stretching test gave higher value in 90 degree direction compared with forming limit in 0 degree direction.

A Study on High Temperature Fracture Behavior of Plasma Sprayed Zirconia/ NiCrAlY Coating System (지르코니아 /NiCrAlY 계 플라즈마 용사피막의 고온 파괴거동에 관한 연구)

  • Kim, Yeon-Jik;Im, Jae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3234-3242
    • /
    • 1996
  • This paper describes experimental results of modified small punch( MSP) test conducted to evaluate the fracure characteristics and mechanical properties of plasma sparayed zirconia ($ZrO_2$ stabilized with 8wt. % $Y_20_3$ : YSZ) NiCrAlY composite. The mixing ratios of YSZ/NiCrAlY were 0/100, 25/75, 50/50, 100/0 v.%. Test temperatures ranged from 293K to 1473K. This study is directed at development of thermal barrrier coating(TBC) system with superior heat resistance and mechanical properties. The microstructure and fracture process of the composite were examined by SEM and AE method. The mechanical properties of 100% YSZ were nearly independent of the temperatures tested in this study. In contrast, the NiCrAlY-containing composites showed a significant decrease of the mechanical properties above 1273K, showing a ductile- brittle transition behavior up to the temperature. Furthermore, it can seen that 25% YSZ/75% NiCrAlY composite gave the highest fracure strength and fracture energy among the mixing ratio tested over the temperature range.

A Study on the Drawability of Clad Sheet Metal (STS304-A1050-STS304) by Warm Draw Die (온간금형에 의한 클래드판재(STS304-A1050-STS304)의 드로잉성 연구)

  • Ryu H. Y.;Kim J. H.;Ryu J. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.136-143
    • /
    • 2002
  • Warm draw die technique which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical and square cup drawing of stainless-aluminum clad sheets. In experiments the temperature of die and blank holder is varied from room temperature to $180^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch comer area. Test materials chosen for experiments are STS304-A1050-STS304 clad sheets. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio and relative drawing depth as well as quality of drawn cups(distribution of thickness)are investigated and validity of warm drawing process is also discussed. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant remover and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

A Study on Evaluation of Shear Strength for Pb-free Solder Joint with Ni-P/Au UBM (Ni-P/Au UBM을 갖는 Pb-free 솔더 접합부의 전단강도 평가에 관한 연구)

  • Cho, Seong-Keun;Yang, Sung-Mo;Yu, Hyo-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.187-192
    • /
    • 2011
  • UBM(Under Bump Metallurgy) is very important for successful realization of Flip-Chip technology. In this study, it is investigated the interfacial reactions between various Sn-Ag solder alloys and Ni-P/Au UBM and Cu plate finish. It is also evaluated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which are applied in the electronic packages. In terms of interfacial microstructure, the Pb-free solder joints have thicker IMCs than the Sn-Pb solder joints. The thickness of IMC is related to Reflow time. The IMC has been observed to grow with the increase in Reflow time. As a result of the shear test, in case of Max. shear strength, Pb-free solder showed the highest strength value and Sn-37Pb showed the lowest strength value 10 be generally condition of Reflow time.

Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen (미소시험편을 이용한 고온 크리프 특성 평가법 개발)

  • Yu, Hyo-Sun;Baek, Seung-Se;Lee, Song-In;Ha, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF