• Title/Summary/Keyword: Pumping system

Search Result 655, Processing Time 0.032 seconds

Remote Control of Pumping System for Underground Water Pollution and Running Dry Prevention Using Ubiquitous (유비쿼터스를 이용한 지하수 오염과 고갈방지를 위한 펌핑시스템의 원격제어)

  • Tack, Han Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • This paper was development of remote controller of pumping system by using ubiquitous for underground water contamination prevention in the area of glasshouse facility. This paper automatically controls from to temperature and humidity for pumping sprinkler at water hanging cultivation. This prevents indiscreetive development of underground water, and prevents damage of environmental pollution without complementary measures in case of water lacked humble-void. The result of this research, confirms decrease of electrical fee, prevention of indiscreet underground water usage and its drying up thought optimum farm products management and pumping control system.

Water - Commander of Vacuum (물, 진공의 지배자)

  • In, Sang Ryul
    • Vacuum Magazine
    • /
    • v.1 no.1
    • /
    • pp.6-10
    • /
    • 2014
  • It is a common sense that water is an old offender crashing our dream of achieving a good vacuum in an early time. Various techniques for accelerating the removal of water have been developed and utilized. However, we generally are not skilled in treating the water pumping in a physically proper manner. We are rather used to handle the situation of the water pumping just like considering a conventional air pumping. Under such an erroneous approach, we cannot help making an overestimation on the pumping capability of our vacuum system, and it leads to a big mismatch between the real operation timing and the planned process schedule. In this article, some main points concerning with the subject that a vacuum pumping is really a water pumping will be discussed.

A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-min;Lee, Dong-keun;Park, Jong-ho;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

Theoretical Analysis of Charging Current of Linear Type Magnetic Flux Pump According to the Penetrated Position and Moving Speed of Magnetic Flux (침투자속의 위치와 이동속도에 따른 리니어형 자속펌프 충전전류의 이론적 해석)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • We proposed a linear type magnetic flux pump (LTMFP) as a power supply for superconducting magnet system. In order to explain the operating mechanism of pumping action, the pumping sequence based on penetrated position and moving speed of magnetic flux on the superconducting Nb foil should be understood. In this paper, we induced a theoretical equation for pumping current of LTMFP according to the position of normal spot and corresponding equivalent circuit. In addition, current charging tendencies under the intensity of magnetic flux and frequency were described based on the theoretical pumping equation.

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF

MULTIDIMENSIONAL OPEN SYSTEM FOR VALVELESS PUMPING

  • JUNG, EUNOK;KIM, DO WAN;LEE, JONGGUL;LEE, WANHO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1973-2000
    • /
    • 2015
  • In this study, we present a multidimensional open system for valveless pumping (VP). This system consists of an elastic tube connected to two open tanks filled with a fluid under gravity. The two-dimensional elastic tube model is constructed based on the immersed boundary method, and the tank model is governed by a system of ordinary differential equations based on the work-energy principle. The flows into and out of the elastic tube are modeled in terms of the source/sink patches inside the tube. The fluid dynamics of this system is generated by the periodic compress-and-release action applied to an asymmetric region of the elastic tube. We have developed an algorithm to couple these partial differential equations and ordinary differential equations using the pressure-flow relationship and the linearity of the discretized Navier-Stokes equations. We have observed the most important feature of VP, namely, the existence of a unidirectional net flow in the system. Our computations are focused on the factors that strongly influence the occurrence of unidirectional flows, for example, the frequency, compression duration, and location of pumping. Based on these investigations, some case studies are performed to observe the details of the ow features.

Development of a System Dynamics Computer Model for Efficient Operations of an Industrial Water Supply System (공업용수 공급시스템의 효율적인 운영을 위한 시스템다이내믹스 모형의 개발)

  • Kim, Bong-Jae;Park, Su-Wan;Kim, Tae-Yeong;Jeon, Dae-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.383-397
    • /
    • 2012
  • In this study, a System Dynamics (SD) simulation model for the efficient operations of an industrial water supply system was developed by investigating the feedback loop mechanisms involved in the operations of the system. The system was modeled so that as demand is determined the water supply quantity of intake pumping stations and dams are allocated. The main feedback loop showed that many variables such as the combinations of pump operation, unit electric power(kWh/$m^3$), unit electric power costs(won/$m^3$), water level of water way tunnel, suction pressure and discharge of pumping station, and tank and service reservoir water level had causal effects and produced results depending on their causal relationship. The configurations of the model included an intake pumping station model, water way tunnel model, pumping station model (including the tank and service reservoir water level control model), and unit electric power model. The model was verified using the data from the case study industrial water supply system that consisted of a water treatment plant, two pumping stations and four dams with an annual energy costs of 5 billion won. It was shown that the electric power costs could have been saved 7~26% during the past six years if the operations had been based on the findings of this study.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

Simulation of Modeling Characteristics of Pumping Design Factor on Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, with the development of advanced thin film devices comes the need for constant high quality vacuum as the deposition pressure is more demanding. It is for this reason our research seeks to understand how the variable design factors are employed in such vacuum systems. In this study, the effects of design factor applications on the vacuum characteristics were simulated to obtain the optimum design modeling of variable models on an ultra high vacuum system. The commercial vacuum system simulator, $VacSim^{(multi)}$, was used in our investigation. The reliability of the employed simulator was verified by the simulation of the commercially available models of ultra high vacuum system. Simulated vacuum characteristics of the proposed modeling aligned with the observed experimental behavior of real systems. Simulated behaviors showed the optimum design models for the ideal conditions to achieve optimal pressure, pumping speed, and compression ratio in these systems.

Simulation of Vacuum Characteristics in Semiconductor Processing Vacuum System by the Combination of Vacuum Pumps (진공펌프 조합에 의한 반도체공정 진공시스템 진공특성 전산모사)

  • Kim, Hyung-Taek;Kim, Dae-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.449-457
    • /
    • 2011
  • Effect of pump combinations on the vacuum characteristics of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for VacSimMulti simulator was proposed. Simulation results of various pumping combinations showed the possibilities and reliabilities of simulation for the performance of vacuum system in specific semiconductor processing. Simulation of roughing pump presented the expected pumping behaviors based on commercial specifications of employed pumps. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the predictable characteristics of process application of both simulated systems were also acquired.