• Title/Summary/Keyword: Pumping rate

Search Result 378, Processing Time 0.034 seconds

Analysis of Stream Depletion due to Groundwater Pumping in Variable Stream Stages Using an Analytical Model (해석적 모형을 이용한 지하수 양수 및 하천수위 변화에 따른 하천수 감소 특성 분석)

  • Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.439-449
    • /
    • 2019
  • To prevent the drying-out of streams and to make effective use of stream water and groundwater, it is necessary to evaluate the impact of groundwater pumping on nearby streams. To this end, stream depletion due to groundwater pumping should be investigated in terms of various hydraulic characteristics of the aquifer and stream. This study used the Baalousha analytical solution, which accounts for stream-stage variation over time, to analyze stream depletion due to groundwater pumping for cases where the stream level decreases exponentially and recovers after the decrease. For conditions such as an aquifer transmissivity of 10~100 ㎡ d-1, storage coefficient 0.05~0.3, streambed hydraulic conductance 0.1~1.0 m d-1, stream-well distance 100~500 m, and stage recession coefficient 0.1~1.0 d-1, the contribution of stream water (the dimensionless ratio of stream water reduction rate to groundwater pumping rate) was analyzed in cases where stream level change was considered. Considering the effect of stream-stage recession, the contribution of stream water is greatly reduced and is less affected by the stream-depletion factor, which is a function of the stream-to-well distance and hydraulic diffusivity. However, there is no significant difference in stream depletion under constant- and variable-stage recovery after recession. These results indicate that stream level control can distribute the relative impacts on stream water and aquifer storage during groundwater pumping

암반공압파쇄에 의한 지하수량 증대효과 분석

  • 김혜빈;부성안;이기철;김종태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.47-50
    • /
    • 2003
  • We carried out rock pneumatic fracturing test which to increase groundwater yield by injection of highly pressured air in artificially under the surface every four borehole. The result of test performing shows that effect of increasing groundwater was not found in three testhole around igneous and metamorphic formation area, but we can realized that about 15 percent increased wateryield appeared in number P-5 test hole at sedimmentary rock formation.

  • PDF

부산시 동래 온천지역의 양수량, 온천수위, 강수량의 관련성 연구

  • 차용훈;함세영;정재열;장성;손건태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.455-458
    • /
    • 2004
  • This study uses time series analyses to evaluate fluctuation of water levels in a geothermal water well due to pumping, in relation to rainfall at Dongrae hot-spring site on the southeastern coast of tile Korean peninsula. The volume of water pumped from the public study wells ranges from 542 to 993 m$^3$/month, and the minimum water level ranged from 35 to 144.7 m during the measured period. Autocorrelation analysis was conducted for the withdrawal rate at the public wells, water levels and rainfall. The autocorrelation of the withdrawal rate shows distinct periodicity with 3 months of lag time, the autocorrelation of rainfall shows weak linearity and short memory with 1 months of lag time, and the autocorrelation of water levels shows weak linearity and short memory with 2 months of lag time. The cross-correlation between the pumping volume and the minimum water level shows a maximum value 1 at a delayed time of 34 months. The cross-correlation between rainfall and the minimum water level shows a maximum value of 0.39 at a delayed time of 32 months.

  • PDF

Evaluation of Well Production by a Riverbank Filtration Facility with Radial Collector Well System in Jeungsan-ri, Changnyeong-gun, Korea (경남 창녕군 증산리 일대 방사집수정을 활용한 강변 여과수 개발량 평가)

  • Lee, Eun-Hee;Hyun, Yun-Jung;Lee, Kang-Kun;Kim, Hyoung-Soo;Jeong, Jae-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2010
  • Well production by a riverbank filtration facility with multi-radial collector well systems in Jeungsan-ri, Changnyeong gun, Korea was evaluated. In this study, the drawdown at collector wells due to pumping and groundwater inflow rates along the horizontal arms of the collector wells were computed through numerical simulations. Sensitivities of the well production to hydraulic conductivity and well flow coefficient, which represents the resistance to the flow from the aquifer to the horizontal arms, were analyzed. Simulation results showed that, with given proposed pumping rate conditions, the drawdown in the caisson exceeded maximum drawdown constraints in the study site and the adjustment of the pumping rate at each well is needed. The drawdown is affected by the hydraulic conductivity of the main aquifer and the well flow coefficient, which means the profound field investigation of the study site is needed to accurately estimate the efficiency of riverbank filtration through radial collector wells.

Analysis of the Operational Characteristics of Superconducting Power supply Considering the structure of the Sheets (박막구조에 따른 초전도전원장치의 동작특성 해석)

  • Kim, Ho-Min;Yoon, Yong-Soo;Ahn, Min-Cheol;Ko, Tae-Kuk;Han, Tae-Su;Oh, Sang-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.4
    • /
    • pp.164-169
    • /
    • 2001
  • This paper deals with comparison of characteristics of continuous-sheet type low-Tc superconducting (LTS) power supply and discrete-sheet type LTS power supply. These characteristics have been analyzed through experiments. These power supplies consist of two exciters, a rotor, a stator, and a LTS load. A continuous-sheet type has a single continuous niobium (Nb) sheet attached to the inner surface of on the stator. In the case of discrete-sheet type, four separated Nb sheets are used. this experiment is using 1.81 mH LTS magnet load and maximum 30 A dc exciter current. A discrete-sheet type is expected to produce much better pumping rate than a continuous-sheet type. The experimental observations have been compared with the theoretical predictions. In this experiment, the maximum pumping-current has reached about 926 A.

  • PDF

Characterization of a Xanthorhodopsin-homologue from the North Pole

  • Kim, Se Hwan;Cho, Jang-Cheon;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.60-63
    • /
    • 2013
  • Rhodopsins belong to a family of membrane-embedded photoactive retinylidene proteins. One opsin gene was isolated from ${\beta}$-proteobacterium (IMCC9480) which had been collected at the North Pole. It is very similar to Xanthorhodopin (XR) of HTCC2181. In this study, we carried out basic characterization of the rhodopsin. It has ${\lambda}max$ of 536, 554, and 546 nm at pH 4.0, 7.0, and 10.0, respectively. Since the pKa of its proton acceptor is around 6.27, we measured its proton pumping activity and photocycling rate at pH 8.0. It has a typical proton acceptor (D99) and donor (E110) which mediate proton translocation from intracellular to extracellular region when deduced from the sequence alignments. On the basis of in vitro proton pumping activity, it was proposed to have fast photocycling rate with M and O intermediates, indicating that it is a typical ion-pumping rhodopsin. Since the XR has not yet been expressed in any other heterologous expression system, we tried to get much more information about the XR through the XR-homologue rhodopsin.

Simulation of Valveless Pump Using Pumping Chamber Connected to Elastic Tube (탄성 튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프의 수치해석)

  • Shin, Soo Jai;Chang, Cheong Bong;Sung, Hyung Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • A valveless pump consisting of a pumping chamber with an elastic tube was simulated using an immersed boundary method. The interaction between the motion of the elastic tube and the pumping chamber generated a net flow toward the outlet through a full cycle of the pump. The net flow rate of the valveless pump was examined by varying the stretching coefficient, bending coefficient, and aspect ratio of the elastic tube. Photographs of the fluid velocity vectors and the wave motions of the elastic tube were examined over one cycle of the pump to gain a better understanding of the mechanism underlying the valveless pump. The relationship between the gap in the elastic tube and the average flow rate of the pump was analyzed.

Pulsed-laser-diode Intermittently Pumped 2-㎛ Acousto-optic Q-switched Tm:LuAG Laser

  • Wen, Ya;Jiang, Yan;Zheng, Hao;Zhang, Hongliang;Wang, Chao;Wu, Chunting;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.238-246
    • /
    • 2020
  • The heat distribution in crystals in a 2-㎛ acousto-optic Q-switched Tm:LuAG laser pumped by pulsed-laser-diode (pulsed-LD) intermittent-pumping technology was analyzed using COMSOL software. The thermal lensing effect of the Tm:LuAG crystal can be mitigated by pulsed-LD intermittent-pumping techniques. An experimental setup using this kind of approach achieved maximum output energy of 8.31 mJ, minimum pulse width of 101.9 ns, and highest peak power of 81.55 kW, reached at a Q-switched repetition rate of 200 Hz. It offers significant improvement of performance of the output laser beam, compared to pulsed-LD double-ended pumping technology at the same repetition rate.

A Numerical Study on Flow Analysis of a Valveless Bidirectional Piezoelectric Micropump (밸브 없는 양방향 피에조 마이크로펌프의 유동해석)

  • Lee, Sang-Hyuk;Hur, Janet;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2008
  • A numerical simulation on the flow field of a valveless bidirectional piezoelectric micropump has been performed. In this type of micropump, the oscillation of the piezoelectric diaphragm generates the blowing and suction flow through the oblique channel from the pumping chamber. The angle between the oblique and main channel causes the variation of flow distribution through upstream and downstream channels in suction and blowing modes. In the suction flow mode, the working fluid flows from both the upstream and downstream of the main channel to the pumping chamber through the oblique channel. However, in the blowing flow mode, the fluid pushed out of the pumping chamber flows more toward the downstream of the main channel due to the inertia of the fluid. In the present study, the effects of geometries such as the angle of oblique channel and the shape of main channel on the flow rate of the up/downstream were investigated. The flow rate obtained from the pump and the energy required to the pump were also analyzed for various displacements and frequencies of the oscillation of the diaphragm.

The Scale-dependent of Hydraulic Conductivity in Leaky Confined Aquifer with High Permeability at the Ttaan Isle, Gimhae City (김해 딴섬의 고투수성 누수 피압대수층에서 수리전도도의 규모종속효과)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kim, Byung-Woo;Kwon, Byung-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Pumping test was conducted to understand hydraulic conductivity for leaky confined aquifer with high permeability. Test aquifer was formed in $25{\sim}35\;m$ below ground surface at predetermined site of riverbank filtration which junction of Nakdong river and Milyang river in the Ttaan isle, Gimhae city, Korea Monitoring wells were located at intervals of 2 m and 5 m from pumping well in south-west direction (MW1 and MW2 wells) and northeast direction (MW3 and MW4 wells), respectively. Pumping test was continuously conducted for constant pumping rate of $2,500m^3/day$, hydraulic conductivity was estimated using AQTESOLV 3.5 program. Hydraulic conductivity were estimated to be $1.745{\times}10^{-3}m/sec$ for pumping well (PW), $2.452{\times}10^{-3}m/sec$ for between PW and MW1 wells, $2.161{\times}10^{-3}m/sec$ for between PW and MW2 wells, $2.270{\times}10^{-3}m/sec$ for between PW and MW3 wells and $2.591{\times}10^{-3}m/sec$ for between PW and MW4 wells. The function of hydraulic conductivity (K) as monitoring distance (d) were estimated to be logK = 0.0693logd - 2.671 for south-west direction (PW-MW1-MW2 line), logK = 0.0817logd - 2.655 for north-east direction (PW-MW3-MW 4 line). Scale exponent of hydraulic conductivity as test volume was estimated using Schulze-Makuch et al.(1999) method. Scale exponent of this aquifer was estimated to be 0.15. It means that test aquifer has very low heterogeneity. The radius of influence estimated using transmissivity, maximum groundwater level displacement, distance from pumping well and pumping rate during pumping test were 7.148 m for south-west direction and 6.912 m for north-east direction. The increasing rate of hydraulic conductivity from pumping well to maximum radius of influence were estimated to be 1.40 times for south-west direction and 1.49 times for north-east direction. Thus, heterogeneity of test aquifer was a little higher in north-east direction.