• Title/Summary/Keyword: Pumping Rate

Search Result 375, Processing Time 0.033 seconds

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.

Asymmetric Flows for Porous Silicon Electroosmotic Pumps (다공성 실리콘막을 포함한 전기침투 방식 펌프에서의 비대칭적 인 유동)

  • Kim, Dae-Joong;Santiago, Juan G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.703-704
    • /
    • 2008
  • We fabricated and tested porous silicon-based electroosmotic pumps. Compared to other pumping media, porous silicon is beneficial for obtaining comparable flow rates with much lowered electric potential, while maintaining enough mechanical properties. We fabricated porous silicon with two sided-reactive etching processes. We found higher flow rate per electric potential (consistent with previous studies) and we also found asymmetric flow rates for different pumping directions. We plan to utilize this asymmetry for AC pumping applications.

  • PDF

A Determination Method of a Rainwater Retention-Pumping System Combination for Runoff Control from Building Roof Area (지붕면 유출제어를 위한 빗물의 저장-펌프 시스템 조합 결정방안)

  • Kim, Young-Jin;Han, Moo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.495-499
    • /
    • 2008
  • This study developed a determination method for a rainwater retention-pumping combination system for roof runoff control. The outflow and stored water volume in the rainwater system was simulated using a water balance equation. Its result is presented in the TPP (Tank capcity-Peak outflow-Pumping rate) curves for rainfall return periods. In a case study on reduction of the peak flow rate of 100-year return period to 5-year in Seoul, The range of pumping rate for $100m^2$ roof area is determined as $0{\sim}25{\ell}$/min. Additionally, retention volume of $8.5{\sim}10m^3$ can be combined with the pumping rate range. That is to say an effective combination of a retention-pumping system capacity can be determined from a system of $8.5m^3$ tank with $25{\ell}$/min to $10m^3$ tank without pump. Using the TPP curves, engineers can determine the effective combination range of retention & pumping system capacity. Furthermore, that can be helpful to decide a detail system capacity for field condition.

  • PDF

Effectiveness of Double Negative Barriers for Mitigation of Sewater Intrusion in Coastal Aquifer: Sharp-Interface Modeling Investigation (경계면 수치 모델을 이용한 해안 지역 이중 양수정의 해수침투 저감 효과)

  • Jung, Eun Tae;Lee, Sung Jun;Lee, Mi Ji;Park, Namsik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1087-1094
    • /
    • 2014
  • Saltwater pumping method can be used to mitigate saltwater intrusion in coastal aquifers. However, the saltwater pumping well may discharge large freshwater along with saltwater, thereby wasting precious resources. A double negative barrier was proposed: an inland well to capture freshwater and a saltwater well near the coastline to pump saltwater. A previous study anaylzed effects of double negative barriers in dispersion-dominated coastal aquifers and determined the critical pumping rate at the saltwater well which minimized the saltwater ratio at the freshwater well. However, the study resulted in 1~15% of saltwater ratios, which were too high, for example, for drinking water standards. This study analyzed cases that were considered in the previous study, but for advection-dominated cases, and found that freshwater with sufficiently low saltwater ratios could be developed at the freshwater well. In addition, for optimal groundwater management of a watershed not only the minimum saltwater ratio at the freshwater well but also the least freshwater wasted at the saltwater well must be pursued.

Estimation of optimal pumping rate, well efficiency and radius of influence using step-drawdown tests (단계양수시험을 이용한 최적 양수량, 우물효율 및 영향반경 산정)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Cheon, Jeong-Yong;Jun, Seong-Chun;Kwon, Hyung-Pyo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2010
  • Optimal pumping rate, well efficiency and radius of influence were estimated using field step-drawdown tests. According to the analysis results, optimal pumping rates were estimated as 9.37, 16.20 $m^3/day$ for KDPW 1 and 8.11, 14.10 $m^3/day$ for KDPW 2. The well efficiency was calculated as 72.02~90.73% for KDPW 1 while it was 70.62~88.52% for KDPW 2. In the meanwhile, the steady-state analysis yielded the radius of influence (ROI) of 3.50~31.92 m in case of pumping at KDPW 1 and the ROI of 0.14~37.43 m in case of pumping at KDPW 2. In addition, the transient analysis produced the ROI of 0.02~8.34 m for KDPW 1 pumping and the ROI of 0.24~9.68 m for KDPW 2 pumping. The methodology used in this study can be usefully applied in the pump and treat remediation design for contaminated groundwater.

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.

Assessment of Effects of Groundwater Pumping from Deep Aquifer on Streamflow Depletion (죽산천 주변 암반층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il Moon;Cha, Joon Ho
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.769-779
    • /
    • 2015
  • The streamflow depletion due to groundwater pumping from deep aquifer near the Juksan stream has been simulated, in this study, by using the surface water and groundwater integrated model, SWAT-ODFLOW in order to analyze the relationship between the stream depletion and hydraulic properties of aquifer and streambed, and to spatially assess the streamflow depletion. The simulated results showed that the streamflow depletion rate divided by the pumping rate for each well location ranges from 10% to 90% with reflecting the various well-stream distance, transmissivity, storativity, and streambed hydraulic conductance. In particular, the streamflow depletion exceeds about 50% of pumping rate for conditions with transmissivity higher than $10m^2/day$ or storage coefficient lower than 0.1. The simulated results in the form of spatial maps indicated that the spatially averaged percent depletion of streamflow is about 53.6% for five years of pumping which is lower than that for shallow aquifer pumping by 12.9%. From the spatially distributed stream depletion, it was found that higher and more rapid stream depletion to pumping occurs near middle-downstream reach.

Monitoring of Seawater Intrusion in Unconfined Physical Aquifer Model using Time Domain Reflectometry (자유면 대수층 모형에서의 TIME DOMAIN REFLECTOMETRY를 이용한 해수침투 모니터링)

  • 김동주;하헌철;온한상
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2003
  • In this study, a phenomenon of saltwater intrusion was monitored under various conditions regarding recharge and pumping rate using time domain reflectometry for a laboratory scale unconfined aquifer to verify the basic theory behind seawater intrusion and to investigate movement of salt-freshwater interface in accordance with the ratio of pumping and recharge rate. Results showed that a thick mixing zone was formed at the boundary instead of a sharp salt-freshwater interface that was assumed by Ghyben and Herzberg who derived an equation relating the water table depth $(H_f)$ to the depth to the interface $(H_s)$. Therefore our experimental results did not agree with the calculated values obtained from the Ghyben and Herzberg equation. Position of interface which was adopted as 0.5 g/L isochlor moved rapidly as the Pumping rate $(Q_p)$ increased for a given recharge rate $(Q_r)$. In addition, interface movement was found to be about 7 times the ratio of $Q_p/Q_r$ in our experimental condition. This indicates that Pumping rate becomes an important factor controlling the seawater intrusion in coastal aquifer.

Assessment of Streamflow Depletion Due to Groundwater Pumping from a Well (단일 관정 지하수 양수에 따른 하천수 감소량 평가)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il Moon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1079-1088
    • /
    • 2013
  • Groundwater pumping from a well has different impacts on streamflow depletion because hydraulic properties of the aquifer and the stream bed differ depending on its location. Therefore, quantitative assessment of streamflow depletion due to each groundwater pumping with different well locations is needed for the effective groundwater development and streamflow management. In this study, a watershed-based surface water and groundwater integrated model, SWAT-MODFLOW was used to assess the streamflow depletion near stream reach due to groundwater pumping from a well located within the Sinduncheon watershed. The arbitrary 50 wells among the currently used groundwater pumping wells were selected within the study area and the streamflow responses to each groundwater pumping were simulated at nearby and downstream reaches. In particular, the applicability of the Stream Depletion Factor (SDF) and Stream Bed Factor (SBF), which are widely used for evaluating the degree of streamflow depletion due to groundwater pumping, was evaluated. The simulated results demonstrated that the streamflow depletion rate divided by the pumping rate significantly differ depending on well locations and distance between well and stream, showing a wide range of values from below 20% to above 90%. From the simulated results, it was found out that the SDF or the SBF can be a partial referred value but not an absolute criterion in determining whether a pumping well has a great impact on streamflow depletion or not.

Analysis of Pumping Test Data and The Prediction of Drawdown for Daejong-Chun Area (대종천유역 충적대수층의 수리성 분석 및 수위강하예측에 관한 연구)

  • Choi, Jae-Jin;Sung, Won-Mo;Hahn, Jeong-Sang
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.541-549
    • /
    • 1993
  • The main goal of this paper is to determine hydraulic properties and to predict drawdown for the efficient and stable development of groundwater in the Daejong-Chun area, North of Kyungsang-Do. Based on geological survey and analysis of well logging data conducted in 1991, it is found that the type of aquifer of this area is considered to be an anisotropic unconfined aquifer with saturated thickness of 19.8 m. In order to characterize this aquifer pumping test was conducted, and the resulting drawdown data were utilized for the analysis by applying both type curve matching technique and semi-log straight line method. As a result, the average specific yield of this aquifer is estimated as 32.3%, and the average ratio of $K_H$ to $K_V$ is only 2.7, which means that gravitational effect is not significant factor for this type of aquifer. For the validation of the estimated hydraulic properties, the analytical model which was developed with Newton-Raphson iteration procedure in this study, was employed to generate the drawdown. And, the resulting drawdown was compared against actual drawdown data and it shows the excellent matches. The actual drawdown data for 9 hours of pumping were used for history matching purposes and relatively satisfactory matches were achieved in this match. Then, the model was run by using the tuned parameters that are obtained during history matching stage, and the drawdown was predicted for the next 30 years of pumping with $3,000m^3/day$ of constant pumping rate. Its result indicates that the drawdown was stabilized as 1.41 m from 20 days with $3,000m^3/day$ of constant pumping rate, which is the required amount of water to be safely supplied to this area.

  • PDF