• Title/Summary/Keyword: Pumped storage power plant

Search Result 49, Processing Time 0.041 seconds

Importance of pumped storage hydroelectric power plant in Turkey

  • Aras, Egemen
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.239-254
    • /
    • 2017
  • The world began to search for new energy sources with increasing energy demand. Renewable energy sources are as hydropower important for alternative energy. Countries with high hydroelectric potentials continue to work to utilize hydroelectric power plants in the most efficient way. Pumped storage hydropower plants are an important investment to meet the growing energy needs at peak times and to store energy. Although it produces energy in many countries, pumped storage hydropower plants have not begun to be built in Turkey which has high hydroelectric potential. A new era will be opened for energy production in Turkey where a large number of pumped storage hydropower plants projects are in study phase with the construction of pumped storage hydropower plants and first nuclear power plant.

Environmental Impact Assessment of the Yangyang Pumped Storage Power Plant Construction on the Namdae-Chun River, Korea (남대천 양양 양수발전소의 환경영향과 대책)

  • Chun, Sang-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.151-160
    • /
    • 1997
  • The Yangyang Pumped Storage Power Plant is being constructed by Korea Electric Power Corporation in Namdae-Chun River, Korea. The Yangyang Pumped Storage Power Plant has 1000MW capacity with upper reservior, lower reservior, hydrauric tunnel and underground power plant facilities. But NGO(Non Governmental Groups) and residents are worried about the power plant construction because of some problems, as follows. (1) Namdae-Chun River is principal salmon returning river in Korea. (2) Namdae-Chun River is main water supply source of the Yangyang country. So, brief explanation of Environmental Impacts Assessment executed by Korea Electric Power Corporation, main environmental impacts and countermeasures will be introduced.

  • PDF

Development of New Effectiveness Assessment Indices of Pumped Storage Power Plant (양수발전기의 신 효용성 평가 지수 개발)

  • Lee, Sung-Hun;Choi, Jae-Seok;Cha, Jun-Min;Kim, Daniel
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.867-874
    • /
    • 2014
  • The pumped storage power plants have excellent load following characteristics. It can also be committed quickly for synchronous reserve when it is in the generating mode because it can readily increase its generating power and, consequently, increases the overall system reliability. There are strong incentives for standing the system reliability. Additionally, $CO_2$ emission can be typically impacted due to operation of pumped generators. The increase or decrease of $CO_2$ depends on the generation mix. This paper proposes evaluation of reliability, economy and environment of power system considering pumped generator. This paper describes three case studies of the reliability and economy and environment according to capacity factor and storage capacity of pumped generators. The probabilistic production simulation model is used in this paper. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system model on the $5^{th}$ power plan in Korea.

A Study on Modeling of Pumped Storage Power Plant (양수발전소의 모델링에 관한 연구)

  • Han, Yoon-Gyo;Lee, Seung-Yoon;Park, Chul-Won
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.77-78
    • /
    • 2015
  • For the smooth operation and efficient management of pumped storage power plants, we should be understand a generator, turbine, exciter, governor, and stabilizer and prepare an abnormal accident through an accident simulation by software such as PSCAD, PSS/E. This paper investigates configuration of the generator system of ${\bigcirc}{\bigcirc}$ pumped storage power plant. And describes the modeling and fault simulation studies using PSCAD.

  • PDF

Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response (빠른 응답성을 갖는 가변속 DFIM 분석)

  • Sun, Jinlei;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

A Study on the Fire Safety Measure of Pumped Storage Power Plant (양수발전소의 화재안전 대책에 관한 연구)

  • Kim, Yoo-Shik
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.125-130
    • /
    • 2006
  • Pumped storage power plant is a system of generating electricity with hydroelectric power, in which at times of low electrical demand such as during nights, excess generation capacity of many power plants is used to pump water into the higher reservoir, and when there is higher demand, water is released back into the lower reservoir through a turbine, generating electricity. As pumped storage power plants across the nation are not on building registry under "the Article 6 of the Special Act by the Development of Power Resources", they are classified as a structure, not as a building. As a result, permit of fire protection facility is unnecessary, and fire protection administration is excluded from approval to completion of construction. Therefore, this study is to improve problems in accordance with the application of "he Article 6 of the Special Act by the Development of Power Resources", repair of facilities and problems with safety control to effectively prevent similar damages from repeatedly happening to pumped storage power plants in operation or under construction nationwide during a fire.

Development of monitoring system of static frequency converter in pumped storage power plant (양수발전소 SFC 감시시스템 개발)

  • Lee, Joo-Hyun;Lim, Ick-Hun;Ryu, Ho-Sun;Sin, Man-Soo;Kim, Bong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.213-215
    • /
    • 2006
  • A static frequency converter(SFC) in a pumped storage power plant is important equipment for converting electric motor kinetic energy into electric Bower. A SFC monitoring system consists of high voltage thyristor firing equipment, fault detection module, data gathering module, real time data processing equipment and man machine Interface system. This paper describes SFC system overview, developed SFC monitoring system configuration including system characteristics. and successful application result to San-Cheong pumped storage power plant.

  • PDF

Optimization of Preventative Maintenance Cycle for Equipments of Pumped-Storage Power Plant by Taking into Account Reliability and Economical Efficiency (신뢰도 및 경제성에 기반한 양수 발전 설비의 예방점검 주기 최적화 연구)

  • Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1331-1338
    • /
    • 2010
  • Recently, the need for improving the economical efficiency of pumped-storage power plants has increased because of the decrease in the availability of electricity caused by an increase in the consumption of electricity at night. Therefore, a preventative maintenance cycle, especially an overhaul cycle, is required. Unconditional extension cannot be implemented because it may cause unanticipated failures due to insufficient maintenance. Therefore, in this study, a methodology for optimizing the preventative maintenance cycle by taking into account both reliability and economical efficiency is presented; this methodology has been developed by reviewing previous studies on reliability and considering the characteristics of pumped-storage power plants. Finally, an extended overhaul cycle is derived by applying this methodology to a domestic pumped-storage power plant.

A Study of digital excitation system for pumped storage power plant (양수 발전소 디지털 여자시스템 관한 연구)

  • Ryu, Ho-Seon;Shin, Mahn-Su;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1018-1020
    • /
    • 2002
  • For the life extension of the aged pumped storage power plant, the static digital excitation system had been developed by KEPRI(Korea Electric Power Research Institute). This paper will discuss the control design conception of pumping mode and the application results of system.

  • PDF

Development of a New Prediction Alarm Algorithm Applicable to Pumped Storage Power Plant (양수발전 설비에 적용 가능한 새로운 고장 예측경보 알고리즘 개발)

  • Dae-Yeon Lee;Soo-Yong Park;Dong-Hyung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.