• Title/Summary/Keyword: Pump Seal

Search Result 105, Processing Time 0.025 seconds

Effects of Annular Seals on the Stability of Centrifugal Pump Rotors (遠心펌프 回轉軸系의 安定性에 미치는 시일의 影響)

  • 양보석;오세규;암곤탁삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1986
  • Rotor dynamic response of pumps is greatly influenced by the nature of the hydraulic forces arising from wearing seal, balance drum and impeller, etc.. Therefore, rotor dynamic analysis should be conducted during the design stage in order to aleviate some of the vibrational problems which might occur during the operational life of pumps. Previsousely, the authors have proposed the method to obtain the dynamic seal coefficients of the annular plain seal, convergent and divergent tapered seals, parallel grooved seal, spiral grooved seal and annular stepped seal. On the basis of these results, this paper presents the investigated effect of seals on the stability behavior of a centrifugal pump. The results show the effects of seal geometry, pressure difference, clearance, length/diameter ratio, on stability behavior.

Static Characteristic Analysis of Mechanical Face Seal Used for Boiler Feedwater Pump (보일러 급수 펌프용 미케니컬 페이스 실의 정특성 해석)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.230-239
    • /
    • 2010
  • Mechanical face seal installed in boiler feedwater pump prevents leakage of working fluid using thin fluid film between stator and rotor. If the leakage of working fluid exceeds the allowable volume, serious malfunction of boiler feedwater pump will be happen. The thinner fluid film exists between stator and rotor, the less working fluid leaks out. However, if the thickness of fluid film is not enough, the wear of seal face will be increased. And it causes the decrease in life of mechanical face seal. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the static characteristics of wavy mechanical face seals which have 4 different wavy surface profiles on rotor. As a result, opening force, leakage volume of working fluid and friction torque were obtained. For the same minimum film thickness, the static characteristics of mechanical face seal were affected by the wavy surface profile which can change the thickness of working fluid film and pressure distribution.

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도분석)

  • Kim, B;Jung, W;Baek, H;Kang, D;Chung, J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.492-497
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

  • PDF

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석)

  • Kim, Bohyeong;Jung, W.;Baek, H.;Kang, D.;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Leakage and Dynamic Characteristics of High Pressure Multi-Stage Pump Seals (고압 다단 펌프 시일의 누설 및 동특성에 관한 연구)

  • 곽현덕;이용복;김창호;이봉주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.744-749
    • /
    • 2001
  • As related to rotordynamics, dynamic characteristics of the wear ring seal in high pressure multi-stage pump is calculated in the cases of labyrinth, damper and helically grooved types. The. results show that the labyrinth seal type has superior performance in the view point of leakage. However, in terms of rotordynamics view point, the damper seal type gains acceptable separate margin in critical speed range, while it has slightly inferior leakage performance compared to labyrinth seal type.

  • PDF

Test Results of the Mechanical Face Seal for a Turbopump

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • The mechanical face seal has been tested in Korea Aerospace Research Institute (KARl) for turbopump applications. In the turbopump under current development, the mechanical face seal is installed between fuel pump and turbine to prevent a mixture of fuel and combustion gas. Generally the mechanical face seal in turbopump is exposed to severe environment because of great rotational speed, high temperature of combustion gas and high level of pressure difference. Thus a series of tests were performed to guarantee the reliability of mechanical face seal by means of simulating the practical operating conditions. The tests were conducted up to 20,000 rpm with pressure difference of 800 kPa and temperature of 620 K In addition several carbon materials for mechanical face seal were conducted to the tests to compare the life time. During the tests, the performance against leakage was monitored and the carbon wear was also measured to estimate the life of a mechanical face seal The results show that the leakage flow rates of mechanical face seal is ignorable compared to an overall flow rate of fuel pump. The carbon material which has the finest wear resistance was found during the tests. Lastly no critical failure of mechanical face seal was found during the tests and the reliability of mechanical face seal for turbopump was successfully proved.

시일의 마멸로 인한 다단터빈펌프의 위험속도 변화

  • Kim, Yeong-Cheol;Lee, Dong-Hwan;Lee, Bong-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.203-209
    • /
    • 1998
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on Its system behavior. Stiffness and damping coefficients of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annular seals are calculated as functions of rotating speed as well as seal clearance. As the clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in nitration amplitude by resonance shift and reduce seal damping capability.

  • PDF

A Study on the behavior of contact stress at the lip seal of marine pump (박용 펌프 축용 립시일의 접촉응력 거동에 관한 연구)

  • Kim, Sung-Yun;Kim, Dae-Young;Ahn, Joong-Yeal
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.114-117
    • /
    • 2004
  • The purpose of this study is to investigate geometric effect on the contact stress at a lip seal. The geometries of interest were angle, thickness of lip seal and width of contact surface. The contact stress was calculated by using a coupled thermo-mechanical analysis method. The friction thermal load between lip seal and sleeve was adopted to design load. Based on the FEA results, design variables for controlling the maximum contact stress at the lip seal were identified.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Effects of Hydraulic Force on the Unbalance Vibration of Centrifugal Pump Rotors (원심펌프 회전축계의 불평형 응답에 미치는 유체력의 영향)

  • 양보석;최원호
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.20-26
    • /
    • 1986
  • The paper presents an analytical investigation of the unbalance vibrations of a pump rotor. The analysis applies to rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter rotor elements and discreate bearings, seals, and impellers. The dynamic hydraulic force of bearing, seal and impeller elements are represented by four stiffness coefficients arid four damping coefficients. Numerical results are presented for unbalance response associated with various kinds bearing, and with effects of seal and impeller forces.