• Title/Summary/Keyword: Pump Pipeline System

Search Result 42, Processing Time 0.03 seconds

Study of Hydraulic Transport of Sand-water Mixture by a Dredging Test Loop (준설시험루프를 이용한 모래-물 혼합물 배송에 관한 연구)

  • Lee, Man-Soo;Park, Young-Ho;Lee, Young-Nam;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1504-1511
    • /
    • 2005
  • The efficiency of the hydraulic transport of soil-water mixtures is an important factor in designing and operating a pump & pipeline system and is directly connected with dredging cost and working period. However, the hydraulic transport mechanism in the slurry flow inside the pipeline such as frictional losses, specific energy consumption, deposition velocity has not been well established. In this study a new dredging test loop system was designed and built. It is composed of a slurry pipeline with pipes of different diameters, a centrifugal slurry pump and a diesel engine connected with the slurry pump. and equipped with modern measuring facilities that enable to measure all important characteristics of a transportation system. The objective of this paper is to discuss the efficiency of the hydraulic transport of the Jumoonjin sand-water mixtures in the dredging test loop and to present simple equations induced from the test results of the loop that can express the transport product and the transport productivity.

  • PDF

Development of Water Management System for Optimal Operation and Control in Wide-area Waterworks (광역상수도의 최적운영 및 제어를 위한 수운영시스템 개발)

  • 남의석;우천희;김학배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.489-497
    • /
    • 2003
  • A water management system is developed to reduce the unit cost of production in wide-area waterworks. Improving productivity in waterworks is to save power rate. We suggest a method to schedule the supply of water according to the time-varying power rate and pump control scheme. Water pipeline analysis package (SynerGEE Water) is utilized to obtain optimal pump control solution adaptation to water demand. Our evaluation results show that developed scheme is more efficient than the conventional.

Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump) (팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠))

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF

Water Hammer in the Pump Pipeline System with an Air Chamber (에어챔버가 설치된 가압펌프 계통에서의 수격현상)

  • Kim, Sang-Gyun;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2007
  • Water hammer following the tripping of pumps can lead to overpressures and negative pressures. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient is modeled using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the effects of the polytropic exponent, the discharge coefficient and the wave speed on the result of the numerical analysis were examined. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effects of related parameters to minimize water hammer have been investigated by both field measurements and numerical modeling.

The Plan of Safety for Pump Station through Hydraulic Transient Analysis & Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-man;Park, Jong-ho;Kim, Kyung-yup
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.199-207
    • /
    • 2004
  • Water supply facilities are recently getting larger according as domestic waterworks become multi regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment station and water supply & distribution facilities. Although pumping stations and pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. As a result of this study, a pumping station is guaranteed by the computer simulation and field test analysis. Therefore these are contributed safety operation in pumping station through adjustment of the pumping station safety plan, air valve and valve closing time.

  • PDF

Evaluation of Pumping Rates for Multiple-Well Systems (군정 시스템의 취수량 평가)

  • Park, Nam-Sik;Kim, Sung-Yun;Kim, Boo-Gil;Kim, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • We have developed a method to evaluate pumping rates from a system of pumping-well family. For a given system actual pumping rates depend on pump characteristics and the sum of the static head and the dynamic head. The static head is the elevation difference between the natural groundwater level and the outlet of the pipeline that connects all the wells. Major components of the dynamic head are groundwater drawdown in the well and pipeline head loss. The dynamic head and the pump characteristics depend on the pumping rates. Actual pumping rates are determined at the intersections of the system total-head curves and the pump characteristic curves. The Newton-Raphson's method is used to solve the nonlinear simultaneous equations. The method is applied to a hypothetical well family. Impacts of various design and operational parameters on the pumping rates are analyzed.

A Study on the Analysis of Seawater Pipeline Network for Open Rack Vaporizers (천연가스 기화기용 해수배관망 해석에 관한 연구)

  • Kim, Ho-Yeon;Park, Jong-Hark;Lee, Jeong-Hwan;Kim, Dong-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1760-1764
    • /
    • 2003
  • This study was carried out to establish an analytical method on the open circuit seawater pipeline network for open rack vaporizers(ORVs). The linear theory method was chosen to solve this network system. In particular, the method was modified to calculate the static pressure at each node and to determine the operating condition of each pump with the mean static pressure of pumps and ORVs. The proposed method is the first report demonstrating that can be used as a solver for the complicated open circuit. Also, the method indicated the importance for exactly calculating equivalent length of pipes including valves, bends, fittings, and others to raise the accuracy. Although this technique is good for solving this system, it is still required to improve the convergence rate.

  • PDF

Impeller Failure and Pressure Pulsation of Boiler Main Feed Water Pump for Power Plant (발전소 주 급수 펌프의 임펠러 손상과 압력맥동 현상)

  • Kim, Yeon-Whan;Kim, Kye-Youn;Lee, Woo-Kwang;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.368-373
    • /
    • 2001
  • A major concern on high-energy centrifugal pump is the potential for interaction of two-phase flow phenomena with mechanical response of the pumping elements. The other concern is the pressure pulsations created from trailing edge of the impeller blade and flow separation and recirculation at partial load in centrifugal pumps. These interactions generating between rotor and casing cause dynamic pulsation on pump and exciting pipeline vibration. The higher severity responses, the more lead to failure of pump and system components. Finally, it cause severe axial vibration of single stage pump due to the hydraulic instability in flow condition below BEP.

  • PDF

A Study on Valve-Induced Water Hammer Characteristics for Large Pump System (밸브에 의한 대형펌프시스템의 수격특성에 관한 연구)

  • Lee, C.J.;Lim, K.S.;Cho, D.H.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.177-178
    • /
    • 2009
  • Hydraulic Transients would be occurred since pressure is increased or decreased when water speed inside of pipeline is rapidly changed A study on water hammer has become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. In this study, the method of characteristic line was adopted to evaluate the valve-induced water hammer phenomena in a pumps feedwater system.

  • PDF

A Reduction in Pressure Ripples of Axial Piston Pumps of Bent Axis by Phase Interface (위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력 맥동 감소)

  • Kim, Kyung-Hoon;Park, Kyung-Seok;Jang, Ju-Sub;Kim, Bong-Hwan; Lee, Kyu-Won;Son, Kwon;Shin, Min-Ho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1261-1265
    • /
    • 2003
  • Axial piston pumps of bent axis have been commonly used in hydraulic systems because of high pressure level. best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the axial piston pumps of bent axis require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the axial piston pumps of bent axis was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a paralle linel could reduce the discharge pressure wave of the pump well. The analysis model of the axial piston pumps of bent axis developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

  • PDF