• Title/Summary/Keyword: Pulsed Laser deposition

Search Result 639, Processing Time 0.028 seconds

Characterization of ZnO Thin Films Grown by Pulsed Laser Deposition for Channel Layer of Transparent TFTs (펄스 레이저 증착법으로 성장된 투명 TFTs 채널층을 위한 ZnO 박막 분석)

  • Lee, Won-Yong;Kim, Ji-Hong;Roh, Ji-Hyoung;Cho, Dae-Hyung;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.77-78
    • /
    • 2008
  • ZnO thin films were deposited on glass substrates by pulsed laser deposition (PLD) at various oxygen pressures. We observed structural, electrical and optical properties of ZnO films. Structural properties were analysed by XRD and FE-SEM. Electrical properties for applications of transparent thin film transistors (TTFTs) were measured by hall measurement using van der pauw methods at room temperature. In order to apply in transparent devices, we measured transmittance, and optical bandgap energy was calculated by Tauc's equation. The results showed that ZnO films deposited at 200mTorr oxygen pressure were applicable to channel layers of transparent TFTs. It had high hall mobilities ($52.92cm^2$/V-s) and suitable transmittance at visible wavelength region (above 80%).

  • PDF

Effect of Laser Shot Number on the Surface Particle Density of $YBa_2Cu_3O_{7-x}$ Thin Films by Pulsed Laser Deposition (펄스레이저 입사수에 따른 $YBa_2Cu_3O_{7-x}$박막의 표면입자밀도 변화)

  • 서정대;성건용
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.312-320
    • /
    • 1994
  • Effect of the laser shot number on the particulates density of the pulsed laser deposited YBa2Cu3O7-x thin films and the laser irradiated surface morphology of the YBa2Cu3O7-x bulk target have been investigated. Until 100 laser shots of cumulative irradiation, the films has the particulates density of ~103 mm-2. However, after 100 laser shots, the density was increased more than 10 times. This results has been explained by the change of particulate ejection path with the development of conical structure at the target surface.

  • PDF

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery (전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성)

  • 안준구;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.593-598
    • /
    • 2004
  • To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method (PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성)

  • Lee, Hong-Chan;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

Characterization of Phosphorus Doped ZnO Thin Films grown by Pulsed Laser Deposition Method (펄스 레이저 증착법에 의해 증착된 Phosphorus 도핑된 ZnO 박막의 특성 분석)

  • Lim, Sung-Hoon;Kang, Hong-Seong;Kim, Gun-Hee;Chang, Hyun-Woo;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.55-56
    • /
    • 2005
  • The properties of phosphorus doped ZnO thin films deposited on (001) sapphire substrates by pulsed laser deposition (PLD) were investigated depending on various deposition conditions. The phosphorus (P) doped ZnO target was composed of ZnO + x wt% Al (x=1, 3, 5). The structural, electrical and optical properties of the ZnO thin films were measured by X-ray diffraction (XRD), Hall measurements and photoluminescence (PL). As the deposition temperature optimized, the electrical properties of the phosphorus doped ZnO (ZnO:P) layer showed a electron concentration of $7.76\times10^{16}/cm^3$, a mobility of 10.225 $cm^2/Vs$, a resistivity of 7.932 $\Omega$cm. It was observed the electrical property of the film was changed by dopant activation effect as target variations and deposition conditions.

  • PDF

Characterization of AlN Thin Films Grown by Pulsed Laser Deposition on Sapphire Substrate (사파이어 기판에 펄스 레이저 증착법으로 성장된 AlN 박막의 특성)

  • Jeong, Eun-Hee;Chung, Jun-Ki;Jung, Rae-Young;Kim, Sung-Jin;Park, Sang-Yeup
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.551-556
    • /
    • 2013
  • AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition and the films were characterized by changing the deposition conditions. In particular, we investigated the optimal conditions for the application of a heat sinking plane AlN thin film. Epitaxial AlN films were deposited on sapphire ($c-Al_2O_3$) single crystals by pulsed laser deposition (PLD) with an AlN target. AlN films were deposited at a fixed pressure of $2{\times}10^{-5}$ Torr, while the substrate temperature was varied from 500 to $700^{\circ}C$. According to the experimental results of the growth temperature of the thin film, AlN thin films were confirmed with a highly c-axis orientation, maximum grain size, and high thermal conductivity at $650^{\circ}C$. The thermal conductivity of the AlN thin film was found to increase compared to bulk AlN near the band gap value of 6.2 eV.

The superconductivity and pinning properties of Y2O3-doped GdBa2Cu3O7-δ films prepared by pulsed laser deposition

  • Oh, Won-Jae;Park, Insung;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.41-45
    • /
    • 2018
  • We have investigated the effect of $Y_2O_3$ nanoparticles on the pinning properties of $Y_2O_3$-doped $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) films. Both undoped and $Y_2O_3$-doped GdBCO films were grown on $CeO_2$-buffered MgO (100) single crystal substrates by pulsed laser deposition (PLD) using KrF (${\lambda}=248nm$) laser. The $Y_2O_3$ doping contents were controlled up to ~ 2.5 area% by varying the internal angles of $Y_2O_3$ sectors put on the top surface of GdBCO target. Compared with the $Gd_2O_3$-doped GdBCO films previously reported by our group [1], the $Y_2O_3$-doped GdBCO films exhibited less severe critical temperature ($T_c$) drop and thus slightly enhanced critical current densities ($J_c$) and pinning force densities ($F_p$) at 65 K for the applied field parallel to the c-axis of the GdBCO matrix (B//c) with increasing the doping content. Below 40 K, the in-field $J_c$ and $F_p$ values of all $Y_2O_3$-doped GdBCO films exhibited higher than those of undoped GdBCO film, suggesting that $Y_2O_3$ inclusions might act as effective pinning centers.

Pulsed laser deposition of YBCO thin films using modified melt-textured grown targets (Modified melt-textured growth 법으로 제작한 타겟을 사용한 YBCO 박막의 펄스레이저 증착)

  • Kim, Chang-Hoon;Kim, In-Tae;Hong, Kug-Sun;Kim, Young-Hwan;Choi, Sang-Sam;Hahn, Taek-Sang
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.115-119
    • /
    • 1999
  • Ba$_2Cu_3O_{7-{\delta}}$ (YBCO) thin films were deposited by pulsed laser deposition using differently prepared targets: One was a conventionally solid-state sintered (SSS) target and the other was a modified melt-textured grown (MTC) target. Compared with SSS targets, MTG targets showed a well-connected microstructure consisting of much larger grains and the surface was Bess roughened with the cumulative laser incidence. YBCO films deposited from MTC targets showed a denser and smoother surface of the basal film than the case of SSS targets. The investigations of ${\alpha}$-axis outgrowths in the films indicated that the deposition using MTG targets would result in a more homogeneous and stable film growth as compared to the SSS targets. Also, TEM analysis revealed that the film deposited from MTG targets had a less granular microstructure that would reduce weak-link effects in the film.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

Structural and Electrical properties of Piezoelectric ZnO Films Grown by Pulsed Laser Deposition for Film Bulk Acoustic Resonator (마이크로파 통신소자용 ZnO 압전 박막의 구조적 전기적 특성)

  • Kim, Gun-Hee;Kang, Hong-Seong;Ahn, Byung-Du;Lim, Sung-Hoon;Chang, Hyun-Woo;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.41-42
    • /
    • 2005
  • The characteristics of ZnO films are reported depending on different deposition conditions for film bulk acoustic resonators (FBARs). The ZnO films have been deposited on Al films evaporated on p-type (100) silicon substrate by pulsed laser deposition (PLD) technique using a Nd:YAG laser. These films exhibit an electrical resistivity higher than $10^7$ $\Omega$m. X-ray diffraction measurements have shown that ZnO films are highly c-axis oriented with full width at half maximum (FWHM) below $0.5^{\circ}$. These results show the possibility of FBAR devices using by PLD.

  • PDF