• 제목/요약/키워드: Pulse shape discrimination(PSD)

검색결과 10건 처리시간 0.03초

Digital n-γ Pulse Shape Discrimination in Organic Scintillators with a High-Speed Digitizer

  • Kim, Chanho;Yeom, Jung-Yeol;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • 제44권2호
    • /
    • pp.53-63
    • /
    • 2019
  • Background: As neutron fields are always accompanied by gamma rays, it is essential to distinguish neutrons from gamma rays in the detection of neutrons. Neutrons and gamma rays can be separated by pulse shape discrimination (PSD) methods. Recently, we performed characterization of a stilbene scintillator detector and an EJ-301 liquid scintillator detector with a high-speed digitizer DT5730 and investigated optimized PSD variables for both detectors. This study is for providing a basis for developing fast neutron/gamma-ray dual-particle imager. Materials and Methods: We conducted PSD experiments using stilbene scintillator and EJ-301 liquid scintillator and evaluated neutron and gamma ray discriminability of each PSD method with a $^{137}Cs$ gamma source and a $^{252}Cf$ neutron source. We implemented digital signal processing techniques to apply two PSD methods - the charge comparison (CC) method and the constant time discrimination (CTD) method - to distinguish neutrons from gamma rays. We tried to find optimized PSD variables giving the best discriminability in a given experimental condition. Results and Discussion: For the stilbene scintillator detector, the charge comparison method and the constant time discrimination method both delivered the PSD FOM values of 1.7. For the EJ-301 liquid scintillator detector, both PSD methods delivered the PSD FOM values of 1.79. With the same PSD variables, PSD performance was excellent in $300{\pm}100keVee$, $500{\pm}100keVee$, and $700{\pm}100keVee$ energy regions. This result shows that we can achieve an effective discrimination of neutrons from gamma rays using these scintillator detector systems. Conclusion: We applied both PSD methods to a stilbene and a liquid scintillator and optimized the PSD performance represented by FOM values. We observed a good separation performance of both scintillators combined with a high-speed digitizer and digital PSD. These results will provide reference values for the dual-particle imager we are developing, which can image both fast neutrons and gamma rays simultaneously.

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.

A technique for the reduction of pulse pile-up effect in pulse-shape discrimination of organic scintillation detectors

  • Nakhostin, M.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.360-365
    • /
    • 2020
  • A technique for the reduction of pulse pile-up effect in digital pulse-shape discrimination (PSD) of neutrons and gamma-rays with organic scintillation detectors is presented. The technique is based on an electronic reduction of the effective decay-time constant of scintillation pulses while retaining the PSD information of the pulses. The experimental results obtained with a NE213 liquid scintillation detector in a mixed radiation field of neutrons and gamma-rays are presented, demonstrating a figure of merit (FOM) of 1.20 ± 0.05 with an energy threshold of 350 keVee (electron equivalent energy) when the effective length of the pulses is reduced to 50 ns.

Neutron spectroscopy using pure LaCl3 crystal and the dependence of pulse shape discrimination on Ce-doped concentrations

  • Vuong, Phan Quoc;Kim, Hongjoo;Luan, Nguyen Thanh;Kim, Sunghwan
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3784-3789
    • /
    • 2021
  • We report a simple technique for direct neutron spectroscopy using pure LaCl3 crystals. Pure LaCl3 crystals exhibit considerably better pulse shape discrimination (PSD) capabilities with relatively good energy resolution as compared with Ce-doped LaCl3 crystals. Single crystals of pure and Ce-doped LaCl3 were grown using an inhouse-developed Bridgman furnace. PSD capabilities of these crystals were investigated using 241Am and 137Cs sources. Fast neutron detection was tested using a252Cf source and three separate bands corresponding to electron, proton, and alpha were observed. The proton band induced by the 35Cl(n,p)35S reaction can be used for direct neutron spectroscopy because proton energy is proportional to incident neutron energy. Owing to good scintillation performance and excellent PSD capabilities, pure LaCl3 is a promising candidate for space detectors and other applications that necessitate gamma/fast neutron discrimination capability.

Comparative study of the pulse shape discrimination (PSD) performance of pixelated stilbene and plastic scintillator (EJ-276) arrays for a coded-aperture-based hand-held dual-particle imager

  • Jihwan Boo ;Manhee Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1677-1686
    • /
    • 2023
  • As the demand for the detection of special nuclear materials (SNMs) increases, the use of imaging instruments that can sensitively image both gamma-ray and neutron signatures has become necessary. This study compared the pulse shape discrimination (PSD) performance of gamma/neutron events when employing either a pixelated stilbene or a plastic (EJ-276) scintillator array coupled to a silicon photomultiplier (SiPM) array in a dual-particle imager. The stilbene array allowed a lower energy threshold above which neutron and gamma-ray events can be clearly distinguished. A greater number of events can, therefore, be used when forming both gamma-ray and neutron images, which shortens the time required to acquire the images by nearly seven times.

A scintillation detector configuration for pulse shape analysis

  • Van Chuan, Phan;Hoa, Nguyen Duc;Hai, Nguyen Xuan;Anh, Nguyen Ngoc;Dien, Nguyen Nhi;Khang, Pham Dinh
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1426-1432
    • /
    • 2018
  • This paper presents a neutron detector configuration using EJ-301 scintillation liquid, a R9420 photo-multiplier and a homemade preamplifier. The detector qualities which include the energy linearity, efficiency response and neutron/gamma discrimination are guaranteed for neutron detection in the energy range from 0 to 3000 keVee. Regarding the neutron/gamma discrimination capability, four pulse shape discrimination (PSD) methods which are the threshold crossing time (TCT), pulse gradient analysis (PGA), charge comparison (CC) and correlation pattern recognition (CPR), were evaluated and discussed; among of these, the CPR method provides the best neutron/gamma discrimination.

알파/베타선 동시측정용 phoswich 검출기 (Phoswich Detector for Simultaneous Measuring Alpha/beta Particles)

  • 김계홍;박찬희;이근우;정종헌;서범경
    • 방사성폐기물학회지
    • /
    • 제6권2호
    • /
    • pp.111-117
    • /
    • 2008
  • 배관 내부의 방사성 오염도를 측정하기 위한 ZnS(Ag)/플라스틱섬광체 조합의 알파/베타선 동시측정용 phoswich 검출기를 개발하였다. 알파/베타선 동시측정용 phoswich 검출기의 오염위치에 따른 검출 성능을 PSD (Pulse shape discrimination) 방법을 이용하여 평가하였다. 또한, 검출기를 방사성 오염물질로부터 보호하기 위한 오염방지용 필름에 대한 방사선 감쇄 정도를 실험적으로 평가하였다. PSD 방법으로 알파/베타선 분리 정도를 측정한 결과 충분히 알파와 베타선이 분리되었으며 오염방지용 필름의 적용 가능성을 확인하였다.

  • PDF

Measuring and unfolding fast neutron spectra using solution-grown trans-stilbene scintillation detector

  • Nguyen Duy Quang;HongJoo Kim;Phan Quoc Vuong;Nguyen Duc Ton;Uk-Won Nam;Won-Kee Park;JongDae Sohn;Young-Jun Choi;SungHwan Kim;SukWon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1021-1030
    • /
    • 2023
  • We propose an overall procedure for measuring and unfolding fast neutron spectra using a trans-stilbene scintillation detector. Detector characterization was described, including the information on energy calibration, detector resolution, and nonproportionality response. The digital charge comparison method was used for the investigation of neutron-gamma Pulse Shape Discrimination (PSD). A pair of values of 600 ns pulse width and 24 ns delay time was found as the optimized conditions for PSD. A fitting technique was introduced to increase the trans-stilbene Proton Response Function (PRF) by 28% based on comparison of the simulated and experimental electron-equivalent distributions by the Cf-252 source. The detector response matrix was constructed by Monte-Carlo simulation and the spectrum unfolding was implemented using the iterative Bayesian method. The unfolding of simulated and measured spectra of Cf-252 and AmBe neutron sources indicates reliable, stable and no-bias results. The unfolding technique was also validated by the measured cosmic-ray induced neutron flux. Our approach is promising for fast neutron detection and spectroscopy.

중성자 에너지 측정을 위한 NE213-PSD 장치의 감응 분석 (Response Analysis of the NE213-PSD System for Neutron Energy Spectreum Measurement)

  • 이경주
    • 분석과학
    • /
    • 제5권4호
    • /
    • pp.367-372
    • /
    • 1992
  • 방사선 중성자 선원의 에너지 스펙트럼을 측정하기 위하여 액체 섬광 검출기(NE213)와 펄스모형 분리장치를 감마선 선원과 중성자 선원을 이용하여 그 감응 특성을 분석하였다. Am-Be 선원을 이용하여 이 장치에 대한 "Figure of Merit"을 측정한 결과 1.13 이었다. 이 값은 단색 에너지 중성자 선원인 $^{12}C(d,\;n)^{13}N$에서의 1.3 과 상당히 유사한 값을 보여 준다. NE213-PSD 장치의 성능 시험을 위한 이 실험결과는 중성자-감마 혼합 방사선장에서 스펙트럼의 측정과 중성자 에너지 스펙트럼과 속밀도 측정표준을 확립하는 데 기술적으로 유용하게 쓰일 것이다.

  • PDF

Characterization of a CLYC Detector and Validation of the Monte Carlo Simulation by Measurement Experiments

  • Kim, Hyun Suk;Smith, Martin B.;Koslowsky, Martin R.;Kwak, Sung-Woo;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.48-55
    • /
    • 2017
  • Background: Simultaneous detection of neutrons and gamma rays have become much more practicable, by taking advantage of good gamma-ray discrimination properties using pulse shape discrimination (PSD) technique. Recently, we introduced a commercial CLYC system in Korea, and performed an initial characterization and simulation studies for the CLYC detector system to provide references for the future implementation of the dual-mode scintillator system in various studies and applications. Materials and Methods: We evaluated a CLYC detector with 95% $^6Li$ enrichment using various gamma-ray sources and a $^{252}Cf$ neutron source, with validation of our Monte Carlo simulation results via measurement experiments. Absolute full-energy peak efficiency values were calculated for gamma-ray sources and neutron source using MCNP6 and compared with measurement experiments of the calibration sources. In addition, behavioral characteristics of neutrons were validated by comparing simulations and experiments on neutron moderation with various polyethylene (PE) moderator thicknesses. Results and Discussion: Both results showed good agreements in overall characteristics of the gamma and neutron detection efficiencies, with consistent ~20% discrepancy. Furthermore, moderation of neutrons emitted from $^{252}Cf$ showed similarities between the simulation and the experiment, in terms of their relative ratios depending on the thickness of the PE moderator. Conclusion: A CLYC detector system was characterized for its energy resolution and detection efficiency, and Monte Carlo simulations on the detector system was validated experimentally. Validation of the simulation results in overall trend of the CLYC detector behavior will provide the fundamental basis and validity of follow-up Monte Carlo simulation studies for the development of our dual-particle imager using a rotational modulation collimator.