Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.020

Neutron spectroscopy using pure LaCl3 crystal and the dependence of pulse shape discrimination on Ce-doped concentrations  

Vuong, Phan Quoc (Department of Physics, Kyungpook National University)
Kim, Hongjoo (Department of Physics, Kyungpook National University)
Luan, Nguyen Thanh (Department of Physics, Kyungpook National University)
Kim, Sunghwan (Department of Radiological Science, Cheongju University)
Publication Information
Nuclear Engineering and Technology / v.53, no.11, 2021 , pp. 3784-3789 More about this Journal
Abstract
We report a simple technique for direct neutron spectroscopy using pure LaCl3 crystals. Pure LaCl3 crystals exhibit considerably better pulse shape discrimination (PSD) capabilities with relatively good energy resolution as compared with Ce-doped LaCl3 crystals. Single crystals of pure and Ce-doped LaCl3 were grown using an inhouse-developed Bridgman furnace. PSD capabilities of these crystals were investigated using 241Am and 137Cs sources. Fast neutron detection was tested using a252Cf source and three separate bands corresponding to electron, proton, and alpha were observed. The proton band induced by the 35Cl(n,p)35S reaction can be used for direct neutron spectroscopy because proton energy is proportional to incident neutron energy. Owing to good scintillation performance and excellent PSD capabilities, pure LaCl3 is a promising candidate for space detectors and other applications that necessitate gamma/fast neutron discrimination capability.
Keywords
Neutron spectroscopy; Pure $LaCl_3$ crystal; Pulse shape discrimination; Dual gamma/Neutron detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K.E. Mesick, K.D. Bartlett, D.D.S. Coupland, L.C. Stonehill, Effects of protoninduced radiation damage on CLYC and CLLBC performance, Nucl. Instrum. Methods Phys. Res. A. 948 (2019) 1-22.
2 E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, K. Kramer, H.U. Gudel, Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient, and high-energy resolution scintillators, in: IEEE Trans. Nucl. Sci., 2001, pp. 341-345.
3 E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, The scintillation mechanism in LaCl3:Ce3+, J. Phys. Condens. Matter 15 (2003) 1367-1375.   DOI
4 R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators, I Nucl. Instrum. Methods 95 (1971) 141-153.   DOI
5 J. Kim, H. Kang, H.J. Kim, H. Park, S. Kim, S. Doh, Scintillation properties of BaxSr1-xCl2 single crystals, IEEE Trans. Nucl. Sci. 55 (2008) 1464-1468.   DOI
6 G. Bizarri, P. Dorenbos, Temperature dependent scintillation properties of pure LaCl3, J. Phys. Condens. Matter 21 (2009).
7 A. Khan, P.Q. Vuong, G. Rooh, H.J. Kim, S. Kim, Crystal growth and Ce3+ concentration optimization in Tl2LaCl5: an excellent scintillator for the radiation detection, J. Alloys Compd. 827 (2020) 154366.   DOI
8 G. Rooh, H.J. Kim, S. Kim, Study on crystal growth and scintillation characteristics of Cs2LiCeCl6, IEEE Trans. Nucl. Sci. 57 (2010) 1255-1259.   DOI
9 P.F. Bloser, M.L. McConnell, J.R. Macri, P.J. Bruillard, J.M. Ryan, W. Hajdas, Radiation damage and activation from proton irradiation of advanced scintillators, IEEE Nucl. Sci. Symp. Conf. Rec. 3 (2006) 1500-1505.
10 P. Bhattacharya, C. Brown, C. Sosa, M. Wart, S. Miller, C. Brecher, V.V. Nagarkar, Tl2ZrCl6 and Tl2HfCl6 intrinsic scintillators for gamma rays and fast neutron detection, IEEE Trans. Nucl. Sci. 67 (2020) 1032-1034.   DOI
11 W. Wolszczak, P. Dorenbos, Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators, Nucl. Instrum. Methods Phys. Res. A. 857 (2017) 66-74.   DOI
12 B.D. Milbrath, R.C. Runkle, T.W. Hossbach, W.R. Kaye, E.A. Lepel, B.S. McDonald, L.E. Smith, Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements, Nucl. Instrum. Methods Phys. Res. A. 547 (2005) 504-510.   DOI
13 Q.V. Phan, H.J. Kim, G. Rooh, S.H. Kim, Tl2ZrCl6 crystal: efficient scintillator for X- and γ-ray spectroscopies, J. Alloys Compd. 766 (2018) 326-330.   DOI
14 M.P. Taggart, J. Henderson, Fast-neutron response of LaBr3(Ce) and LaCl3(Ce) scintillators, Nucl. Instrum. Methods Phys. Res. A. 975 (2020) 1-5.
15 M.B. Smith, T. Achtzehn, H.R. Andrews, E.T.H. Clifford, H. Ing, V.D. Kovaltchouk, Fast neutron spectroscopy using Cs2LiYCl6:Ce (CLYC) scintillator, IEEE Trans. Nucl. Sci. 60 (2013) 855-859.   DOI
16 N. D'Olympia, P. Chowdhury, C.J. Guess, T. Harrington, E.G. Jackson, S. Lakshmi, C.J. Lister, J. Glodo, R. Hawrami, K. Shah, U. Shirwadkar, Optimizing Cs2LiYCl6 for fast neutron spectroscopy, Nucl. Instrum. Methods Phys. Res. A. 694 (2012) 140-146.   DOI
17 N. Dolympia, P. Chowdhury, E.G. Jackson, C.J. Lister, Fast neutron response of 6Li-depleted CLYC detectors up to 20 MeV, Nucl. Instrum. Methods Phys. Res. A. 763 (2014) 433-441.   DOI
18 D.J. Lawrence, S. Fix, J.O. Goldsten, S.V. Heuer, R.S. Hourani, S. Kerem, P.N. Peplowski, Near-space operation of compact CsI, CLYC, and CeBr3 sensors: results from two high-altitude balloon flights, Nucl. Instrum. Methods Phys. Res. A 905 (2018) 33-46.   DOI
19 Q. Zhang, F. Zhang, R.P. Gardner, H. Yan, G. Wu, L. Tian, Q. Chen, Y. Ti, A method for determining density based on gamma ray and fast neutron detection using a Cs2LiYCl6 detector in neutron-gamma density logging, Appl. Radiat. Isot. 142 (2018) 77-84.   DOI
20 G. Rooh, H. Kang, H.J. Kim, H. Park, S.H. Doh, Scintillation characteristics of the SrCl2 single crystal for the neutrinoless β+/EC decay search, IEEE Trans. Nucl. Sci. 55 (2008) 1445-1448.   DOI
21 N. Blasi, S. Brambilla, F. Camera, S. Ceruti, A. Giaz, L. Gini, F. Groppi, S. Manenti, A. Mentana, B. Million, S. Riboldi, Fast neutron detection efficiency of 6Li and 7Li enriched CLYC scintillators using an Am-Be source, J. Instrum. 13 (2018) 11010.
22 F.C.L. Crespi, F. Camera, N. Blasi, A. Bracco, S. Brambilla, B. Million, R. Nicolini, L. Pellegri, S. Riboldi, M. Sassi, O. Wieland, F. Quarati, A. Owens, Alpha-gamma discrimination by pulse shape in LaBr3:Ce and LaCl3:Ce, Nucl. Instrum. Methods Phys. Res. A. 602 (2009) 520-524.   DOI
23 P.Q. Vuong, H.J. Kim, H. Park, G. Rooh, S.H. Kim, Pulse shape discrimination study with Tl2ZrCl6 crystal scintillator, Radiat. Meas. 123 (2019) 83-87.   DOI
24 R.J. Gehrke, R. Aryaeinejad, J.K. Hartwell, W.Y. Yoon, E. Reber, J.R. Davidson, The γ-ray spectrum of 252Cf and the information contained within it, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 213 (2004) 10-21.   DOI
25 H.W. Joo, H.S. Park, J.H. Kim, J.Y. Lee, S.K. Kim, Y.D. Kim, H.S. Lee, S.H. Kim, Quenching factor measurement for NaI(Tl) scintillation crystal, Astropart. Phys. 108 (2019) 50-56.   DOI
26 L. Soundara-Pandian, J. Tower, C. Hines, P. O'Dougherty, J. Glodo, K. Shah, Characterization of large volume CLYC scintillators for nuclear security applications, IEEE Trans. Nucl. Sci. 64 (2017) 1744-1748.   DOI
27 E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, K. Kramer, H.U. Gudel, High-energy-resolution scintillator: Ce3+ activated LaBr3, Appl. Phys. Lett. 79 (2001) 1573-1575.   DOI
28 G. Ericsson, Advanced neutron spectroscopy in fusion Research, J. Fusion Energy 38 (2019) 330-355.   DOI
29 T. Brown, P. Chowdhury, E. Doucet, E.G. Jackson, C.J. Lister, A.J. Mitchell, C. Morse, A.M. Rogers, G.L. Wilson, N. D'Olympia, M. Devlin, N. Fotiades, J.A. Gomez, S.M. Mosby, R.O. Nelson, Applications of C7LYC scintillators in fast neutron spectroscopy, Nucl. Instrum. Methods Phys. Res. A. 954 (2020) 161123.   DOI