DOI QR코드

DOI QR Code

A technique for the reduction of pulse pile-up effect in pulse-shape discrimination of organic scintillation detectors

  • Nakhostin, M. (Department of Physics, University of Surrey)
  • Received : 2019.05.29
  • Accepted : 2019.07.30
  • Published : 2020.02.25

Abstract

A technique for the reduction of pulse pile-up effect in digital pulse-shape discrimination (PSD) of neutrons and gamma-rays with organic scintillation detectors is presented. The technique is based on an electronic reduction of the effective decay-time constant of scintillation pulses while retaining the PSD information of the pulses. The experimental results obtained with a NE213 liquid scintillation detector in a mixed radiation field of neutrons and gamma-rays are presented, demonstrating a figure of merit (FOM) of 1.20 ± 0.05 with an energy threshold of 350 keVee (electron equivalent energy) when the effective length of the pulses is reduced to 50 ns.

Keywords

References

  1. W.G.J. Langeveld, et al., Comparison of pulse shape discrimination performance of stilbene and liquid scintillator under high count-rate active interrogation conditions, Nucl. Instrum. Methods A (2019), https://doi.org/10.1016/j.nima.2018.09.039. In press.
  2. C. Hill, et al., Photofission for Active SNM Detection I: Intense Pulsed 8 MeV Bremsstrahlung Source, Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE, 2012, pp. 1424-1429.
  3. M. Ishikawa, et al., Fast collimated neutron flux measurement using stilbene scintillator and flashy analog-to-digital converter in JT-60U, Rev. Sci. Instrum. 77 (2006) 10E706. https://doi.org/10.1063/1.2221927
  4. T. Itoga, et al., Fast response neutron emission monitor for fusion reactor using Stilbene Scintillator and Flash-ADC, Radiat. Prot. Dosim. 126 (2007) 380-383. https://doi.org/10.1093/rpd/ncm141
  5. S. Marrone, et al., Pulse shape analysis of liquid scintillators for neutron studies, Nucl. Instrum. Methods A 490 (2002) 299-307.
  6. X.L. Luo, et al., Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors, Nucl. Instrum. Methods A 897 (2018) 59-65.
  7. D. Marocco, et al., High count rate neutron spectrometry with liquid scintillation detectors, IEEE Trans. Nucl. Sci. 56 (3) (2009) 1168-1173. https://doi.org/10.1109/TNS.2009.2020164
  8. K. Ogawa, et al., The large helical device vertical neutron camera operating in the MHz counting rate range, Rev. Sci. Instrum. 89 (2018) 113509. https://doi.org/10.1063/1.5054818
  9. B. D'Mellow, et al., Digital discrimination of neutrons and ${\gamma}$-rays in liquid scintillators using pulse gradient analysis, Nucl. Instrum. Methods A 578 (2007) 191-197.
  10. M. Nakhostin, A new digital method for high precision neutron-gamma discrimination with liquid scintillation detectors, J. Instrum. 8 (2013) P05023. https://doi.org/10.1088/1748-0221/8/05/P05023
  11. H. Singh, R. Mehra, Discrete wavelet transform method for high flux n-${\gamma}$ discrimination with liquid scintillators, IEEE Trans. Nucl. Sci. 64 (2017) 1927-1933. https://doi.org/10.1109/TNS.2017.2708602
  12. F. Belli, et al., A method for digital processing of pile-up events in organic scintillators, Nucl. Instrum. Methods A 595 (2008) 512-519.
  13. C. Fu, et al., Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators, Ann. Nucl. Energy 120 (2018) 410-421. https://doi.org/10.1016/j.anucene.2018.05.054
  14. A. Dutta, K.E. Holbert, Discrimination of neutron-gamma ray pulses with pileup using normalized cross correlation and principal component analysis, IEEE Trans. Nucl. Sci. 63 (2016) 2764-2771. https://doi.org/10.1109/TNS.2016.2615287
  15. G. Amsel, et al., Shortening of detector signals with passive filters for pile-up reduction, Nucl. Instrum. Methods 71 (1969) 1-12. https://doi.org/10.1016/0029-554X(69)90075-5
  16. M. Nakhostin, et al., A digital pulse shortening method for the mitigation of pulse pile-up effect in scintillation radiation detectors, J. Instrum. 14 (2019) P04012.
  17. M. Nakhostin, A comparison of digital zero-crossing and charge-comparison methods for neutron/g-ray discrimination with liquid scintillation detectors, Nucl. Instrum. Methods A 797 (2015) 77-82.
  18. M. Nakhostin, Recursive algorithms for digital implementation of neutron/gamma discrimination in liquid scintillation detectors, Nucl. Instrum. Methods A 672 (2012).
  19. P.S. Prusachenko, et al., Optimization of the n/g separation algorithm for a digital neutron spectrometer, Nucl. Instrum. Methods A 905 (2018) 160-170.

Cited by

  1. Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks vol.1, pp.4, 2020, https://doi.org/10.1088/2632-2153/abb781
  2. Forward modeling of pile-up events in liquid scintillator detectors for neutron emission spectroscopy vol.92, pp.8, 2021, https://doi.org/10.1063/5.0052260