DOI QR코드

DOI QR Code

Measuring and unfolding fast neutron spectra using solution-grown trans-stilbene scintillation detector

  • Nguyen Duy Quang (Department of Physics, Kyungpook National University) ;
  • HongJoo Kim (Department of Physics, Kyungpook National University) ;
  • Phan Quoc Vuong (Department of Physics, Kyungpook National University) ;
  • Nguyen Duc Ton (Department of Physics, Kyungpook National University) ;
  • Uk-Won Nam (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Won-Kee Park (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • JongDae Sohn (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Young-Jun Choi (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • SungHwan Kim (Department of Radiological Science, Cheongju University) ;
  • SukWon Youn (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Sung-Joon Ye (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University)
  • Received : 2022.05.03
  • Accepted : 2022.10.30
  • Published : 2023.03.25

Abstract

We propose an overall procedure for measuring and unfolding fast neutron spectra using a trans-stilbene scintillation detector. Detector characterization was described, including the information on energy calibration, detector resolution, and nonproportionality response. The digital charge comparison method was used for the investigation of neutron-gamma Pulse Shape Discrimination (PSD). A pair of values of 600 ns pulse width and 24 ns delay time was found as the optimized conditions for PSD. A fitting technique was introduced to increase the trans-stilbene Proton Response Function (PRF) by 28% based on comparison of the simulated and experimental electron-equivalent distributions by the Cf-252 source. The detector response matrix was constructed by Monte-Carlo simulation and the spectrum unfolding was implemented using the iterative Bayesian method. The unfolding of simulated and measured spectra of Cf-252 and AmBe neutron sources indicates reliable, stable and no-bias results. The unfolding technique was also validated by the measured cosmic-ray induced neutron flux. Our approach is promising for fast neutron detection and spectroscopy.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (NRF-2020M1A3B7108845).

References

  1. H.J. Kim, I.S. Hahn, M.J. Hwang, R.K. Jain, U.K. Kang, S.C. Kim, S.K. Kim, T.Y. Kim, Y.D. Kim, Y.J. Kwon, H.S. Lee, J.H. Lee, J.I. Lee, M.H. Lee, D.S. Lim, S.H. Noh, H. Park, I.H. Park, E.S. Seo, E. Won, M.S. Yang, I. Yu, Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches, Astropart. Phys. 20 (2004) 549-557, https://doi.org/10.1016/j.astropartphys.2003.09.001.
  2. S.A. Pozzi, Y. Xu, T. Zak, S.D. Clarke, M. Bourne, M. Flaska, T.J. Downar, P. Peerani, V. Protopopescu, Fast neutron spectrum unfolding for nuclear nonproliferation and safeguards applications, Nuovo Cimento Soc. Ital. Fis., A C 33 (2010) 207-214, https://doi.org/10.1393/ncc/i2010-10587-y.
  3. C.W.E. van Eijk, Neutron detection and neutron dosimetry, Radiat. Protect. Dosim. 110 (2004) 5e13, https://doi.org/10.1093/rpd/nch155.
  4. S.D. Clarke, M.C. Hamel, A. di fulvio, S.A. Pozzi, Neutron and gamma-ray energy reconstruction for characterization of special nuclear material, Nucl. Eng. Technol. 49 (2017) 1354-1357, https://doi.org/10.1016/j.net.2017.06.005.
  5. Y. Matsuya, T. Kusumoto, Y. Yachi, Y. Hirata, M. Miwa, M. Ishikawa, H. Date, Y. Iwamoto, S. Matsuyama, H. Fukunaga, Features of accelerator-based neutron source for boron neutron capture therapy calculated by particle and heavy ion transport code system (PHITS), AIP Adv. 12 (2022), 025013, https://doi.org/10.1063/5.0077782.
  6. R.F. Wimmer-Schweingruber, J. Yu, S.I. Bottcher, S. Zhang, S. Burmeister, H. Lohf, J. Guo, Z. Xu, B. Schuster, L. Seimetz, J.L. Freiherr von Forstner, A. Ravanbakhsh, V. Knierim, S. Kolbe, H. Woyciechowski, S.R. Kulkarni, B. Yuan, G. Shen, C. Wang, Z. Chang, T. Berger, C.E. Hellweg, D. Matthia, D. Hou, A. Knappmann, C. Buschel, X. Hou, B. Ren, Q. Fu, The lunar lander neutron and dosimetry (LND) experiment on chang'E 4, Space Sci. Rev. 216 (2020) 104, https://doi.org/10.1007/s11214-020-00725-3.
  7. N.P. Zaitseva, A.M. Glenn, A.N. Mabe, M.L. Carman, C.R. Hurlbut, J.W. Inman, S.A. Payne, Recent developments in plastic scintillators with pulse shape discrimination, Nucl. Instrum. Methods Phys. Res. 889 (2018) 97-104, https://doi.org/10.1016/j.nima.2018.01.093.
  8. N. Zaitseva, B.L. Rupert, I. PaweLczak, A. Glenn, H.P. Martinez, L. Carman, M. Faust, N. Cherepy, S. Payne, Plastic scintillators with efficient neutron/gamma pulse shape discrimination, Nucl. Instrum. Methods Phys. Res. 668 (2012) 88-93, https://doi.org/10.1016/j.nima.2011.11.071.
  9. N. Zaitseva, A. Glenn, L. Carman, H. Paul Martinez, R. Hatarik, H. Klapper, S. Payne, Scintillation properties of solution-grown trans-stilbene single crystals, Nucl. Instrum. Methods Phys. Res. 789 (2015) 8-15, https://doi.org/10.1016/j.nima.2015.03.090.
  10. D.L. Smith, R.G. Polk, T.G. Miller, Measurement of the response of several organic scintillators to electrons, protons and deuterons, Nucl. Instrum. Methods 64 (1968) 157-166, https://doi.org/10.1016/0029-554X(68)90189-4.
  11. Y. Shimizu, M. Minowa, H. Sekiya, Y. Inoue, Directional scintillation detector for the detection of the wind of WIMPs, Nucl. Instrum. Methods Phys. Res. 496 (2003) 347-352, https://doi.org/10.1016/S0168-9002(02)01661-3.
  12. T.H. Shin, P.L. Feng, J.S. Carlson, S.D. Clarke, S.A. Pozzi, Measured neutron light-output response for trans-stilbene and small-molecule organic glass scintillators, Nucl. Instrum. Methods Phys. Res. 939 (2019) 36-45, https://doi.org/10.1016/j.nima.2019.05.036.
  13. W. Hansen, D. Richter, Determination of light output function and angle dependent correction for a stilbene crystal scintillation neutron spectrometer, Nucl. Instrum. Methods Phys. Res. 476 (2002) 195-199, https://doi.org/10.1016/S0168-9002(01)01430-9.
  14. T.A. Laplace, B.L. Goldblum, J.E. Bevins, D.L. Bleuel, E. Bourret, J.A. Brown, E.J. Callaghan, J.S. Carlson, P.L. Feng, G. Gabella, K.P. Harrig, J.J. Manfredi, C. Moore, F. Moretti, M. Shinner, A. Sweet, Z.W. Sweger, Comparative scintillation performance of EJ-309, EJ-276, and a novel organic glass, J. Instrum. 15 (2020) P11020, https://doi.org/10.1088/1748-0221/15/11/p11020. P11020.
  15. Y. Chen, X. Chen, J. Lei, L. An, X. Zhang, J. Shao, P. Zheng, X. Wang, Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method, Sci. China Phys. Mech. Astron. 57 (2014) 1885-1890, https://doi.org/10.1007/s11433-014-5553-7.
  16. M.A.T. Figueiredo, J.M. Bioucas-Dias, Restoration of poissonian images using alternating direction optimization, IEEE Trans. Image Process. 19 (2010) 3133-3145, https://doi.org/10.1109/TIP.2010.2053941.
  17. C. Mertens, C. de Lellis, F. Tondeur, Neutron-photon discrimination and spectrum unfolding with a stilbene detector, Appl. Radiat. Isot. 68 (2010) 957-960, https://doi.org/10.1016/j.apradiso.2009.10.014.
  18. M. Febbraro, B. Becker, R.J. deBoer, K. Brandenburg, C. Brune, K.A. Chipps, T. Danley, A. di Fulvio, Y. Jones-Alberty, K.T. Macon, Z. Meisel, T.N. Massey, R.J. Newby, S.D. Pain, S. Paneru, S. Shahina, M.S. Smith, D. Soltesz, S.K. Subedi, I. Sultana, R. Toomey, Performance of neutron spectrum unfolding using deuterated liquid scintillator, Nucl. Instrum. Methods Phys. Res. 989 (2021), 164824, https://doi.org/10.1016/j.nima.2020.164824.
  19. C. Cao, Q. Gan, J. Song, Q. Yang, L. Hu, F. Wang, T. Zhou, An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning, Nucl. Eng. Technol. 52 (2020) 2452-2459, https://doi.org/10.1016/j.net.2020.04.028.
  20. H. Zhu, Y. Altmann, A. di Fulvio, S. McLaughlin, S. Pozzi, A. Hero, A hierarchical bayesian approach to neutron spectrum unfolding with organic scintillators, IEEE Trans. Nucl. Sci. 66 (2019) 2265-2274, https://doi.org/10.1109/TNS.2019.2941317.
  21. G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl. Instrum. Methods Phys. Res. 362 (1995) 487-498, https://doi.org/10.1016/0168-9002(95)00274-X.
  22. G. D'Agostini, Improved Iterative Bayesian Unfolding, 2010. ArXiv:1010.0632.
  23. P. Harihar, H. Chen, W.J. Stapor, A.R. Knudson, Scintillation decays in a trans-stilbene crystal, Nucl. Instrum. Methods Phys. Res. 336 (1993) 176-178, https://doi.org/10.1016/0168-9002(93)91094-4.
  24. F. Arneodo, P. Benetti, et al., Calibration of BC501A liquid scintillator cells with monochromatic neutron beams, Nucl. Instrum. Methods Phys. Res. 418 (1998) 285-299, https://doi.org/10.1016/S0168-9002(98)00679-2.
  25. R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Methods A. 389 (1997) 81-86, https://doi.org/10.1016/S0168-9002(97)00048-X.
  26. R Core Team, R: A Language and Environment for Statistical Computing, 2020. https://www.R-project.org/.
  27. D. Pelowitz, et al., MCNP6 Users Manual e Code Version 1.0, LA-CP-13-00634 Rev 0, 2013.
  28. S. Agostinelli, J. Allison, et al., Geant4da simulation toolkit, Nucl. Instrum. Methods Phys. Res. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8.
  29. S.A. Payne, W.W. Moses, S. Sheets, L. Ahle, N.J. Cherepy, B. Sturm, S. Dazeley, G. Bizarri, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment. II, IEEE Trans. Nucl. Sci. 58 (2011) 3392-3402, https://doi.org/10.1109/TNS.2011.2167687.
  30. G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters, Nucl. Instrum. Methods Phys. Res. 193 (1982) 549-556, https://doi.org/10.1016/0029-554X(82)90249-X.
  31. R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators. I, Nucl. Instrum. Methods 95 (1971) 141-153, https://doi.org/10.1016/0029-554X(71)90054-1.
  32. A.B. Smith, P.R. Fields, J.H. Roberts, Spontaneous fission neutron spectrum of Cf-252, Phys. Rev. 108 (1957) 411-413, https://doi.org/10.1103/PhysRev.108.411.
  33. K.W. Geiger, L. van der Zwan, The neutron spectrum of a 241Am-Be(a,n) source as simulated by accelerator produced a-particles, Int. J. Appl. Radiat. Isot. 21 (1970) 193-198, https://doi.org/10.1016/0020-708X(70)90066-9.
  34. A. Sharghi Ido, M.R. Bonyadi, G.R. Etaati, M. Shahriari, Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks, Appl. Radiat. Isot. 67 (2009) 1912, https://doi.org/10.1016/j.apradiso.2009.05.020. e1918.
  35. M.J.M. Duke, A.L. Hallin, C.B. Krauss, P. Mekarski, L. Sibley, A precise method to determine the activity of a weak neutron source using a germanium detector, Appl. Radiat. Isot. 116 (2016) 51-56, https://doi.org/10.1016/j.apradiso.2016.06.032.
  36. H.R. Vega-Carrillo, S.A. Martinez-Ovalle, Few groups neutron spectra, and dosimetric features, of isotopic neutron sources, Appl. Radiat. Isot. 117 (2016) 42-50, https://doi.org/10.1016/j.apradiso.2016.03.027.
  37. P. Goldhagen, M. Reginatto, T. Kniss, J.W. Wilson, R.C. Singleterry, I.W. Jones, W. van Steveninck, Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane, Nucl. Instrum. Methods Phys. Res. 476 (2002) 42-51, https://doi.org/10.1016/S0168-9002(01)01386-9.
  38. R.J. Sheu, S.H. Jiang, COSMIC-RAY-INDUCED neutron spectra and effective dose rates near air/ground and air/water interfaces in Taiwan, Health Phys. 84 (2003). https://journals.lww.com/health-physics/Fulltext/2003/01000/COSMIC_RAY_INDUCED_NEUTRON_SPECTRA_AND_EFFECTIVE.8.aspx. 1000/COSMIC_RAY_INDUCED_NEUTRON_SPECTRA_AND_EFFECTIVE.8.aspx
  39. M.S. Gordon, P. Goldhagen, K.P. Rodbell, T.H. Zabel, H.H.K. Tang, J.M. Clem, P. Bailey, Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground, IEEE Trans. Nucl. Sci. 51 (2004) 3427-3434, https://doi.org/10.1109/TNS.2004.839134.