• Title/Summary/Keyword: Pulse power capacitor

Search Result 225, Processing Time 0.027 seconds

Development of 20kV Pulse Power Charging System (20kV급 Capacitor Charging Power System 개발)

  • Jeong, I.W.;Rim, G.H.;Choi, Y.W.;Lee, H.S.;Kim, J.S.;Ryoo, H.J.;Gusev, G.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.213-214
    • /
    • 2001
  • This paper describes a power supply for a rapid pulse power charging system designed for charging a $0.35{\mu}F$ capacitor to 20kV in approximately 3ms. The power supply should be capable of recharging the load capacitor maximum 300 times within one second. This power supply is based on a series resonant 3-phase inverter followed by the step-up transformers. The experiments have been carried out at different repetition rates and charging voltages.

  • PDF

Development of a Microplasma Source under Atmospheric Pressure using an External Ballast Capacitor (방전에너지 제어용 외부 커패시터를 이용한 대기압 마이크로 플라즈마 소스 개발)

  • Ha, Chang-Seung;Lee, Je-Hyun;Son, Eui-Jeong;Park, Cha-Soo;Lee, Ho-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.31-38
    • /
    • 2013
  • A pulse driven atmospheric plasma jet controlled by external ballast capacitor is developed. Unlike the most commonly use DBD sources, the proposed device utilizes bare metal electrode. The discharge energy per pulse can precisely be determined by changing voltage and capacitance of the ballast capacitor. It is shown that the device can provide wide range of plasma, from stable glow mode to near arc state. Current-voltage waveforms, optical emission spectra and discharge images are investigated as a function of an injection energy. The OES shows that He and oxygen lines are increased as a function of the external ballast capacitor. Ozone and rotational temperature have similar tendency with a power consumption. The feeding gas is He and the applied DC voltage is from 400V to 800V when the gap distance is $500{\mu}m$.

Electrochemical Characteristics of Hybrid Capacitor and Pulse Performance of Hybrid Capacitor / Li-ion Battery (Hybrid Capacitor의 전기화학적 특성 및 Hybrid Capacitor / Li-ion Battery의 펄스 방전 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1133-1138
    • /
    • 2005
  • In this study, we have prepared, as the pluse power source, a commercially supplied Li-ion battery with a capacity of 700 mAh and AC resistivity of 60 md at 1 kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected hybrid capacitor/Li-ion battery source. The nonaqueous asymmetric hybrid capacitors constituted with each stack number of pairs composed of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The 10 stacked hybrid capacitor, which was charged and discharged at a constant current at 0.25 $mA/cm^2$ between 3 and 4.3 V, has exhibited the capacitance of 108F and the lowest equivalent series resistance was 32 $m{\Omega}$ at 1 kHz. On the other hand, the enhanced run time of Li-ion battery assisted by the hybrid capacitor was obtained with increasing of current density and pulse width in Pulse mode. The best improvement, $84\;\%$ for hybrid capacitor/Li-ion battery was obtained in the condition of a 7C-rate pulse (100 msec)/0.5C-rate standby/$10\;\%$ duty cycle.

A Design and Implement of the Medical Nd:YAG Laser Firmware under in ZCC method

  • Kim, Whi-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.3-40
    • /
    • 2001
  • The pulsed Nd:YAG laser is the most commonly used type of solid-state laser in many fields. In material processing and medical treatment, the power density control of a laser beam Considered to be significant, which depends on the flashlamp current pulse width and pulse repetition rate. For general laser power supply to control the laser power density, the secondary of the power transformer is connected to the rectifier and filter capacitor. The output of a rectifier is applied to a switching element in the secondary of the transformer. So power supply is complicated and the loss of switching is considerably. In addition, according to increasing pulse repetition rate, charged energy of energy-storage capacitor bank is not transferred sufficiently to flashlamp, and laser output efficiency decreases. In this study, we have ...

  • PDF

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

Pulsed Power Modulator based on IGBTs (IGBT 기반 고압 펄스전원장치)

  • Ryoo, H.J.
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.43-46
    • /
    • 2007
  • In this paper, a novel new pulse power generator based on IGBT stacks is proposed for pulse power application. Proposed scheme consists of series connected 9 power stages to generate maximum 60kV output pulse and one series resonant power inverter to charge DC capacitor voltage. Each power stages are configured as 8 series connected power cells and each power cell generates up to 850VDC pulse. Finally pulse output voltage is applied using total 72 series connected IGBTs. The synchronization of gating signal is important for series operation of IGBTs. For gating signal synchronization, full bridge inverter and pulse transformer generates on-off signals of IGBT gating and specially designed gate power circuit was used. Proposed scheme has lots of advantages such as long lifecyle, compact size, flat topped pulse forming, small weight, protection for arc, high efficiency and flexibility to generate various kinds of pulse output.

  • PDF

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

Development of 60KV Pulse Power Supply using IGBT Stacks (IGBT 직렬구동에 의한 60KV 펄스 전원장치 개발)

  • Ryoo, H.J.;Kim, J.S.;Rim, G.H.;Sytykh, D.;Gussev, G.I.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.917-918
    • /
    • 2006
  • In this paper, a novel new pulse power generatorbased on IGBT stacks is proposed for pulse power application. Proposed scheme consists of series connected 9power stages to generate maximum 60kV output pulse and one series resonant power inverter to charge DC capacitor voltage. Each power stages are configured as 8 series connected power cells and each power cell generates up to 850VDC pulse. Finally pulse output voltage is applied using total 72 series connected IGBTs. The synchronization of gating signal is importantfor series operation of IGBTs. For gating signal synchronization, full bridge inverter and pulse transformer generates on-off signals of IGBT gating and specially designed gate power circuit was used.

  • PDF

Design and Implementation of a Trigger Circuit for Xenon Flash Lamp Driver (제논 플래시 램프 구동장치를 위한 트리거 회로 설계 및 구현)

  • Song, Seung-Ho;Cho, Chan-Gi;Park, Su-Mi;Park, Hyun-Il;Bae, Jung-Su;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.138-139
    • /
    • 2017
  • This paper describes the design and implementation of a trigger circuit which can be series connected with main pulse circuit for a xenon flash lamp driver. For generating high voltage, the trigger circuit is designed as an inductive energy storage pulsed power modulator with 2 state step-up circuit consisting of a boost converter and a flyback circuit. In order to guarantee pulse width, a resonant capacitor on the output side of the flyback circuit is designed. This capacitor limits the output voltage to protect the flyback switch. In addition, to protect another power supply of xenon flash lamp driver from trigger pulse, the high voltage transformer which can carry the full current of main pulse is designed. To verify the proposed design, the trigger circuit is developed with the specification of maximum 23 kV, 0.6 J/pulse output and tested with a xenon flash lamp driver consisting of a main pulse circuit and a simmer circuit.

  • PDF