• Title/Summary/Keyword: Pulse injection

Search Result 245, Processing Time 0.025 seconds

A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer (전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구)

  • 박서욱;전만철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.

Articaine (4%) with epinephrine (1:100,000 or 1:200,000) in inferior alveolar nerve block: Effects on the vital signs and onset, and duration of anesthesia

  • Lasemi, Esshagh;Sezavar, Mehdi;Habibi, Leyla;Hemmat, Seyfollah;Sarkarat, Farzin;Nematollahi, Zahra
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.15 no.4
    • /
    • pp.201-205
    • /
    • 2015
  • Background: This prospective, randomized, double-blind, clinical study was conducted to compare the effects of 4% articaine with 1:100,000 epinephrine (A100) and 4% articaine with 1:200,000 epinephrine (A200) on the vital signs and onset and duration of anesthesia in an inferior alveolar nerve block (IANB). Methods: In the first appointment, an IANB was performed by injecting A100 or A200 in 1 side of the mouth (right or left) randomly in patients referred for extraction of both their first mandibular molars. In the second appointment, the protocol was repeated and the other anesthetic solution was injected in the side that had not received the block in the previous session. Systolic and diastolic blood pressures (SBP and DBP) and pulse rate were measured during and 5 min after the injection. The onset and duration of anesthesia were also evaluated. Data were analyzed using t-test and Mann-Whitney U-test, and p-value was set at 0.05. Results: SBP and pulse rate changes were slightly more with A100; however, DBP changes were more with A200, although the differences were not significant (P > 0.05). There were no statistically significant differences in the parameters evaluated in this study. The onset and duration of anesthesia, and the changes in SBP, DBP, and pulse rate during and 5 min after the injection were the same in both the groups. Conclusions: For an IANB, A200 and A100 were equally efficient and successful in producing the block. Epinephrine concentration did not influence the effects of 4% articaine.

Comparative evaluation of virtual reality distraction and counter-stimulation on dental anxiety and pain perception in children

  • Nunna, Mahesh;Dasaraju, Rupak Kumar;Kamatham, Rekhalakshmi;Mallineni, Sreekanth Kumar;Nuvvula, Sivakumar
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.5
    • /
    • pp.277-288
    • /
    • 2019
  • Background: This study evaluated the efficacy of virtual reality (VR) distraction and counter-stimulation (CS) on dental anxiety and pain perception to local anesthesia in children. Methods: A prospective, randomized, single-blinded interventional clinical trial with a parallel design was used. Seventy children 7-11 years old who required local anesthesia (LA) for pulp therapy or tooth extraction were recruited and allocated to two groups with equal distribution based on the intervention. Group CS (n = 35) received CS and Group VR (n = 35) received VR distraction with ANTVR glasses. Anxiety levels (using pulse rate) were evaluated before, during, and after administration of local anesthesia, while pain perception was assessed immediately after the injection. Wong-Baker faces pain-rating scale (WBFPS), visual analog scale (VAS), and Venham's clinical anxiety rating scale (VCARS) were used for pain evaluation. Student's t-test was used to test the mean difference between groups, and repeated measures ANOVA was used to test the mean difference of pulse rates. Results: Significant differences in mean pulse rates were observed in both groups, while children in the VR group had a higher reduction (P < 0.05), and the mean VCARS scores were significant in the VR group (P < 0.05). Mean WBFPS scores showed less pain perception to LA needle prick in the CS group while the same change was observed in the VR group with VAS scores. Conclusions: VR distraction is better than CS for reducing anxiety to injection in children undergoing extraction and pulpectomy.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

A Study on the Effects of Fuel Rail Pressure and Engine Speed on Gas Fuel System (연료레일 압력과 엔진 속도가 가스연료 시스템에 미치는 영향에 관한 연구)

  • Kwak, Youn-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.579-585
    • /
    • 2018
  • This study is to figure out the fuel injection characteristics according to the injection pressure and engine speed in the fuel supply system for gas fuel. The fuel rail pressure was from 1.5 to 6.0 bar by 1.5 bar increment and engine speed was set 1,000 ~ 6,000 RPM at interval of 1000 RPM. Considering the real engine operation, the injection pulse width was set 2.5ms, 5.0ms, and 13.0ms which correspond low, mid and high load condition respectively. In conclusion, in case of 100cc fuel rail, 4.5 bar of injection pressure showed best performance and the minimum required injection quantity 53cc which guarantees engine output can be obtained in each 1000~ 6000 rpm engine speed.

Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium (등연속체매질로서의 화강암지역의 유효수리전도도 산출)

  • 김경수;김천수;배대석
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.319-332
    • /
    • 2002
  • This study is focused on the characterization of an effective hydraulic conductivity in each hydrogeologic unit assumed as an equivalent continuum medium in the granitic area. Four boreholes of 3" diameter were installed and a Multi-packer system was facilitated in the selected borehole. Various in-situ tests including the fracture logging, constant injection and fall-off tests, slug and pulse tests were carried out. A hydrogeologic unit was defined into the upper and lower zones based on the variation of fracture properties and hydraulic conductivities. The difference of the result obtained by the various hydraulic tests and the effective characterization techniques on rock mass permeability are also discussed. The effective hydraulic conductivity of the upper unit was measured by two times(5.27E-10 m/s~7.57E-10 m/s) that of the lower unit(2.45E-10 m/s~6.81E-10 m/s)through the constant injection and fall-off tests.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Pore-scale Investigation on Displacement of Porewater by Supercritical CO2 Injection Using a Micromodel (초임계상 이산화탄소 주입으로 인한 공극수 대체에 관한 공극 규모의 마이크로모델 연구)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.35-48
    • /
    • 2016
  • A micromodel was applied to estimate the effects of geological conditions and injection methods on displacement of resident porewater by injecting scCO2 in the pore scale. Binary images from image analysis were used to distinguish scCO2-filled-pores from other pore structure. CO2 flooding followed by porewater displacement, fingering migration, preferential flow and bypassing were observed during scCO2 injection experiments. Effects of pressure, temperature, salinity, flow rate, and injection methods on storage efficiency in micromodels were represented and examined in terms of areal displacement efficiency. The measurements revealed that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. It may result from that the overburden pressure and porewater salinity can affect the CO2 solubility in water and the hydrophilicity of silica surfaces, while the neighboring temperature has a significant effect on viscosity of scCO2. Increased flow rate could create more preferential flow paths and decrease the areal displacement efficiency. Compared to the continuous injection of scCO2, the pulse-type injection reduced the probability for occurrence of fingering, subsequently preferential flow paths, and recorded higher areal displacement efficiency. More detailed explanation may need further studies based on closer experimental observations.

A Study on Comparative Analysis of Diffusion Weighted Image Examination before and after Contrast Injection (조영제 사용 전 후 확산강조영상 검사의 비교 분석에 대한 연구)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • The purpose of this study would evaluate if having clinical effects on diffusion image with quantitative analysis through ADC values of brain's normal tissue and lesions before and after contrast injections using a 3.0T. From November in 2007 until December in 2008, a total of 32 patient was performed on 3.0T(Signa Excite, GE Medical System, USA) with the normal or lesions in the patient who requests diffusion weighted image with 8channel head coil. The pulse sequence was used with spin echo EPI(TR: 10000msec, TE: 72.2 msec, Matrix: 128*128, FOV: 240 mm, NEX: 1, diffusion direction: 3, b-value: 1000). Measurement results of ADC values on lesions, CSF, white matter, gray matter, lesions after contrast injection were measured less 75% than before contrast injection, infarction: 100%, CSF: 78%(high), white matter: 71.4%(low), gray matter: 50%(high, low). The results of paired t-test on the deference of ADC values which statically is significant in three(lesions, CSF, white matter)regions except for white matter(p<0.05). Quantitative analysis of lesions, CSF, white matter, gray matter have difference on all regions. ADC values were low in lesions and white matter, normal CSF after contrast injection commonly is high than before contrast injection, ADC values which white matter were high and low (50:50) after contrast injection. 3.0T diffusion weighted image clinically supposed that performing DWI examination after contrast injection was not desirable because of having effects on brain tissue.

  • PDF