• Title/Summary/Keyword: Pulse Transformer

Search Result 259, Processing Time 0.034 seconds

A Basic Study about Design of High Voltage Pulse Transformer (고전압 펄스트랜스의 설계에 관한 기초 연구)

  • Chung, H.J.;Chung, Y.H.;Lee, D.H.;Hong, J.H.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2198-2200
    • /
    • 1999
  • In this study, it is the purpose to study about design and manufacture of a pulse transformer for using in pulse generator and a pulse laser system. In this experiment, a ferite core in transformer instead of air core is used. The performance of the transformer is demonstrated by a voltage pulse waveform according to inductance of primary and secondary in transformer. As a result, the voltage pulse width is increased as increasement of inductance in transformer. And the voltage rate between primary and secondary is almost same with rate of inductance between primary and secondary.

  • PDF

Performance Test of 200-MW Pulse Transformer for 80-MW Klystron Load (80-MW 클라이스트론 부하용 200-MW 펄스 트랜스포머의 성능시험)

  • Jang, S.D.;Oh, J.S.;Son, Y.G.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2167-2169
    • /
    • 1999
  • A pulse transformer producing pulses with the peak power of 200-MW (400 kV 500 A at load side with $4.4{\mu}s$ flat-top) is required to drive the 80-MW pulsed klystron in the PLS linac. We have designed and manufactured the high power pulse transformer with 1 : 17 turn ratio. Its primary functions are to match the impedance of klystron tube to the modulators, and to provide step-up of the voltage. To obtain a fast rise time of the pulse voltage. Low leakage inductance and low distributed capacitance design is very important. In this paper, we discuss the equivalent circuit analysis of the pulse transformer, and present the full power performance test results of pulse transformer.

  • PDF

Various Pulse Forming of Pulsed $CO_2$ laser using Multi-pulse Superposition Technique

  • Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.127-132
    • /
    • 2001
  • We describe the pulse forming of pulsed $CO_2$laser using multi-pulse superposition technique. A various pulse length, high duty cycle pulse forming network(PFN) is constructed by time sequence. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on SCRs of three PFN modules consecutively at a desirable delay time with the aid of PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a High voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage and drive the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated laser pulse shape and duration as various trigger time intervals of SCRs among three PFN modules. As a result, we can obtain laser beam with various pulse shapes and durations from about 250 $mutextrm{s}$ to 600 $mutextrm{s}$.

  • PDF

Efficiency Improvement of Microwave Oven Using a Pulse Power Supply Embedded HVC-High Frequency Transformer (HVC-고주파변압기 내장형 펄스전원장치를 이용한 Microwave Oven의 효율 향상)

  • 정병환;조준석;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.180-187
    • /
    • 2004
  • A conventional power supply of a microwave oven has a 60Hz transformer and high voltage capacitor(HVC). Though it is very simple and has low cost, it has several problems such as large size, heavy weight and low efficiency To improve these problems, various high frequency inverter type power supply have been investigated and developed in recent years. But these cost is higher than the conventional one due to additional control circuit, fast switching devces. In this paper, a novel pulse power supply for microwave oven using high frequency transformer embedded HVC(High Voltage Capacitor) is proposed for down-sizing, cost reduction and efficient improvement. To verify the effectiveness of the proposed transformer, an equivalent circuit of transformer embedded HVC is derived and it's characteristic is described. And the validity of the proposed pulse power supply embedded HVC-high frequency transformer is shown by simulations and experiments accroding to various operating conditions.

High Power Density, High Frequency, and High Voltage Pulse Transformer

  • Kim, S.C.;Jeong, S.H.;Nam, S.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.180-184
    • /
    • 2001
  • The high operation frequency mainly reduces transformer volume in the power supply. A high frequency and high voltage pulse transformer is designed, fabricated, and tested. Switching frequency of the transformer is 100 kHz. Input and output voltages of the transformer are 250 V and 4 kV, respectively. Normal operation power of the transformer is 3 kW. Maximum volume of the transformer is 400 $cm^3$. The power density is thus 7.5 W/$cm^3$. The transformer will be installed in a metal box that has nominal operation temperature of 85 degree centigrade. The transformer and other high voltage components in the box will be molded with Silicon RTV(Room Temperature Vulcaniza) that has a very low thermal conductivity. Procedure of design and test results are discussed. Analytical as well as experimental results of varous paramters such as transformer loss, leakage inductance, distributed capacitance are also discussed. In addition, thermal analysis results from ANSYS code for three different operation conditions are discussed.

  • PDF

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

A EMTP Simulation of High-Voltage Pulse Transformer for Pulsed Power System (펄스파워 시스템용 고전압 펄스변압기의 EMTP 시뮬레이션)

  • Kim, Min-Soo;Lee, Hyong-Gu;Ju, Heung-Jin;Ko, Kwang-Cheol;Kan, Hyong-Bu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1984-1986
    • /
    • 2000
  • In pulsed-power techniques. Marx generator is generally used for the high-power device. but this generator has insulation and spatial problems. So we will suggest a pulse transformer that has a small size to generate the high voltage pulse instead of Marx generator. In this paper, Pulse duration is 4 [${\mu}s$] and the ratio of input and output voltage is 40[kV]/200[kV](step-up ratio=5). The output voltage and the process of pulse compression for pulse circuit are simulated by EMTP (Electro-Magnetic Transient Program). The secondary voltage of pulse transformer is about 200[kV] and pulse width is 4[t/s]. When the secondary winding of the pulse transformer is saturated. the pulse width is 1.25[${\mu}s$]. We selected dummy load 50[$\Omega$] for impedance matching. The pulse voltage of dummy load is 100[kV] and pulse width is 500[ns].

  • PDF

Research on a New 12-Pulse Step-Up and Step-Down Aviation Auto-Transformer Rectifier

  • Jiang, Fan;Ge, Hong-juan;Dong, Xiao-xu;Zhang, Lu
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.266-276
    • /
    • 2018
  • This paper presents a new step-up and step-down multi-pulse auto-transformer rectifier unit (ATRU) topology. This structure can achieve a wide range of output voltages, which solves the problem of auto-transformer output voltage being difficult to regulate. Adding middle taps to the primary winding and reasonably setting the number of auto-transformer windings, constituted two groups of three-phase output voltages with a $30^{\circ}$ phase difference. Multi-pulse output DC voltage is obtained after a three-phase output voltage across two rectifier bridges and inter-phase reactor. Thus, the output DC voltage is related to the number and configuration of the auto-transformer winding. In this paper, the relationship between the voltage ratio of the auto-transformer and the ratio of winding, input current and auto-transformer kilovoltampere rating are deduced and validated by simulations. On this basis, the output voltage range is optimized. An experiment on two different voltage ratio principle prototypes was carried out to verify the correctness of the analysis design.

Development of several hundred kV Air Core pulse transformer (수백 kV급 공심형 펄스 변압기 개발)

  • Kim, S.C.;Park, S.S.;Kim, S.H.;Heo, H.;Nam, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2132-2135
    • /
    • 2005
  • Cylindrical type air core pulse transformers capable of passing high voltage and energy pulse waveforms with high efficiency and low distortion require a much more delicate design balance of physical dimensions and electrical parameters than iron or ferrite core units. The structure of an air core high voltage pulse transformer is relatively simple, but considerable attention is needed to prevent breakdown between transformer windings. Since the thickness of the windings in spiral type is on the order of sub-millimeter, field enhancement at the edge of the windings is very high. It is, therefore, important to find proper electrical insulation Parameter to make the system compact. Several shapes of the winding are considered for air core pulse transformer development. In this paper, we are described design procedure, parameters measure and experiment results of air core type HV pulse transformer.

  • PDF

Transformer diagnosis using characteristics of corona in Oil (변압기의 고장검출을 위한 유중 코로나 특성 연구)

  • 권태원;곽희로;김재철;김응상;박민규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1989.10a
    • /
    • pp.65-70
    • /
    • 1989
  • This paper presents resarch results on the use of a corona detector and a pulse counter in order to diagnose for oil transformers. Using these experimental apparatus, tests were carried out on a typical transformer oil containing different carbonized paper and various moisture contents to measure the picocoulomb val-ues and pulse count. Through the result of this study it was found that the picocoulomb values and pulse count of corona were depended on the getting stained in transformer oil. The amplitude of the partial discharge amount and the number of pulse were decreased up to 70 [。c] and then was increased as the oil temperature goes up. It was concluded that the determinati-on level for diagnosis of oil transform-er was taken into account the temperatu-er of transformer oil, The use of pulse counter method, which have been taken the same property of voltage and temperature variation for the corona measurement mothod, considera-bly increase insulator avilability.

  • PDF