• Title/Summary/Keyword: Pulse RADAR

Search Result 266, Processing Time 0.025 seconds

Design of High Speed Switching Circuit for Pulsed Power Amplifier (Pulsed Power Amplifier를 위한 고속 스위칭 회로 설계)

  • Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2008
  • The pulsed amplifier which switches the main supply voltage of RF amplifier according to input pulse signal has good efficiency and low noise level between pulses. And it has simple structure because it doesn't need a pulse modulator at input port. The pulsed amplifier using the conventional switching circuit has slow fall time compared to rise time. We proposed the novel switching circuit for improving the fall time of pulsed amplifier The proposed switching circuit is implemented by replacing FET of conventional circuit with BJT. As a result of appling this circuit to RF pulsed amplifier, the rise and fall time are 5.7 ns and 21.9 ns at 27 dBm output power, respectively.

Observations of the Polar Ionosphere by the Vertical Incidence Pulsed Ionospheric Radar at Jang Bogo Station, Antarctica

  • Ham, Young-Bae;Jee, Geonhwa;Lee, Changsup;Kwon, Hyuk-Jin;Kim, Jeong-Han;Zabotin, Nikolay;Bullett, Terence
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.143-156
    • /
    • 2020
  • Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5-25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS.

Performance Analysis of Range and Velocity Measurement Algorithm for Multi-Function Radar using Discriminator Estimation Method (변별기 추정방식을 적용한 다기능 레이다용 거리 및 속도 측정 알고리즘 성능 분석)

  • Choi Beyung Gwan;Lee Bum Suk;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Range and velocity measurement algorithm is a procedure for estimating the accurate target position by using matched filter outputs equally spaced both in range and doppler frequency domain. Especially, in measurement algorithm for multi-function radar, it is necessary to consider processing time as well as accuracy in order to track multi-targets simultaneously. In this paper, we analyze range and velocity measurement algorithm using discriminator estimation method which is a technique applied to angle measurement of monopulse radar. The applied method required constant processing time for estimation can be used in multiple target tacking. But, it is necessary to consider measurement accuracy because of using minimum channel outputs for estimation. In the simulation, we show that the applied method is superior to the traditional gravity center measurement algorithm with respect to the accuracy performance and also analyze the characteristics of the proposed technique by calculating RMS error level as the processing parameters such as pulse width , channel step, etc. change.

A Study on Optimizing the Clutter Rejection Capability for a High-Speed Scanning MTI-Pulse Radar (고속 스캔 MTI 펄스 레이더의 지형 클러터 제거 능력 최적화에 관한 연구)

  • Kim, Jong-Geon;Jang, Heon-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1077-1083
    • /
    • 2009
  • To reject the Doppler frequency spectrum dispersion of clutter caused by high-speed antenna rotation of MTI radar system due to terrain characteristics, signal processing parameters(MTI filter constant, M/N detector ration, K-factor and offset of CFAR) are adjusted for the optimal elimination of the ground clutter. For this investigation, logging equipment is designed and utilized for the collection of classified ground clutter data. Test case is devised through Matlab simulation for the classified analysis and optimization of clutter rejection. Then indoor radar test and outside test in accordance with terrain characteristics are repeatedly performed for the verification of the test. This whole process is through the evolutional development model and repeated for the optimization. Final result is that ground-clutter rejection capability is 5.6 times(7.5 dB) better than that of existing radar system.

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

A Study on the effect of electromagnetic interference in adjacent antenna apertures of multi-function radar for Integrated MAST (통합마스트용 다기능위상배열 레이다의 인접 안테나 개구면 전자파 간섭 영향성 연구)

  • Jung, Chae-Hyun;Ryu, Seong-Hyun;Lee, Hang-Soo;Han, Jae-Sub;Kim, Young-Wan;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • In this paper, we study the electromagnetic interference in adjacent antenna aperture of multi-function radar for Integrated MAST of naval ship, which is operating plural radars, with test result of two different X-band antennas. Two antennas is placed in the test fixture copying the part of Integrated MAST for the experiment. The test figure is modeled to see the electromagnetic interference when antenna beam is steered by using electromagnetic analysis tool. Also, 6 test scenarios is determined to verify experimentally and each test scenario is run in an anechoic chamber. At the test antenna #1 radiates a pulse signal and the signal from the antenna #2 is stored and analyzed in the optic data format through a receiving device. Based on the result, the effect of electromagnetic interference is suggested when multi-function radars in the Integrated MAST are operating in adjacent distance.

Design of FMCW Radar Signal Processor for Human and Objects Classification Based on Respiration Measurement (호흡 기반 사람과 사물 구분 가능한 FMCW 레이다 신호처리 프로세서의 설계)

  • Lee, Yungu;Yun, Hyeongseok;Kim, Suyeon;Heo, Seongwook;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Even though various types of sensors are being used for security applications, radar sensors are being suggested as an alternative due to the privacy issues. Among those radar sensors, PD radar has high-complexity receiver, but, FMCW radar requires fewer resources. However, FMCW has disadvantage from the use of 2D-FFT which increases the complexity, and it is difficult to distinguish people from objects those are stationary. In this paper, we present the design and the implementation results of the radar signal processor (RSP) that can distinguish between people and object by respiration measurement using phase estimation without 2D-FFT. The proposed RSP is designed with Verilog-HDL and is implemented on FPGA device. It was confirmed that the proposed RSP includes 6,425 LUT, 4,243 register, and 12,288 memory bits with 92.1% accuracy for target's breathing status.

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Target Classification Algorithm Using Complex-valued Support Vector Machine (복소수 SVM을 이용한 목표물 식별 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • In this paper, we propose a complex-valued support vector machine (SVM) classifier which process the complex valued signal measured by pulse doppler radar (PDR) to identify moving targets from the background. SVM is widely applied in the field of pattern recognition, but features which used to classify are almost real valued data. Proposed complex-valued SVM can classify the moving target using real valued data, imaginary valued data, and cross-information data. To design complex-valued SVM, we consider slack variables of real and complex axis, and use the KKT (Karush-Kuhn-Tucker) conditions for complex data. Also we apply radial basis function (RBF) as a kernel function which use a distance of complex values. To evaluate the performance of the complex-valued SVM, complex valued data from PDR were classified using real-valued SVM and complex-valued SVM. The proposed complex-valued SVM classification was improved compared to real-valued SVM for dog and human, respectively 8%, 10%, have been improved.