• 제목/요약/키워드: Pulse Power Source

검색결과 399건 처리시간 0.026초

펄스다중화 보조회로를 이용한 36-펄스 Back-to-Back 전압원 컨버터의 직류송전 적용연구 (Study on 36-pulse Back-to-Back Voltage Source Converter with Pulse-Interleaving Auxiliary Circuit for HVDC Application)

  • 백승택;최준영;한병문
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권3호
    • /
    • pp.102-108
    • /
    • 2006
  • This paper proposes a 36-pulse back-to-back voltage source converter using four sets of 12-pulse bridges with pulse-Interleaving auxiliary circuit. The proposed back-to-back voltage source converter has an independent control capability of active power and reactive power at the at connection point. The principle of increasing the number of pulses was analyzed using theoretical approach. The operational feasibility of proposed system was verified through computer simulations with PSCAD/EMTDC software. The proposed back-to-back converter can be widely used for the HVDC and FACTS devices.

Modulated Pulsed Power를 이용한 Cr 박막의 증착과 특성 분석

  • 민관식;송제범;윤주영;신용현;차덕준;황윤석;허윤성;김진태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.123.1-123.1
    • /
    • 2013
  • 반도체 공정에서는 사용하는 power source의 형태는 pulse-DC이다. Pulse-DC는 DC power에 비해 증착율이 좋고, 박막의 특성도 우수한 특성을 가진다. 이러한 장점에도 불구하고 pulse-DC나 DC power는 플라즈마 내 이온이 가지는 에너지가 크고, 이온화율도 낮다. 이러한 단점을 극복하기 위해 등장한 power source가 modulated pulsed power이다. Modulated pulsed power는 이온이 가지는 에너지가 DC power의 1/2 수준이며, 이온화율은 4배 이상 높은 특징을 가진다. 본 연구에서는 modulated pulsed power를 사용하여 Cr 박막을 Si wafer 위에 증착하여 박막의 특성을 관찰하였다. 연구에 사용된 power는 5 kV (800 V, 12.5 A), 20~120 KHz, 3 step까지 설정이 가능한 장비이며, base pressure $1.5{\times}10^{-6}$ Torr에서 실험이 진행되었고, 실험에 사용된 불활성 기체는 Ar을 사용하였다.

  • PDF

산업용 선형가속기 시스템 적용을 위한 30-MW 클라이스트론용 고 평균전력 펄스 트랜스포머의 설계 (Design of High Average Power Pulse Transformer for 30-MW Klystron of L-Band Linac Application)

  • 장성덕;손윤규;권세진;오종석;;;문성익;김상호;조무현;남궁원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1550-1551
    • /
    • 2006
  • An L-band linear accelerator system for e-beam sterilization is under design for bio-technology application. The klystron-modulator system as RF microwave source has an important role as major components to offer the system reliability for long time steady state operation. A PFN line type pulse generator with a peak power of 71.5-MW, $7{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present a system overview and initial design results of the high power pulse transformer.

  • PDF

L-band 30-MW 클라이스트론용 고출력 펄스트랜스포머의 파라미터 평가 (Parameter Evaluation of High-Power Pulse Transformer for L-Band 30-MW Klystron)

  • 장성덕;손윤규;권세진;오종석;김상훈;양해룡;문성익;권봉환;조무현;남궁원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1079-1081
    • /
    • 2007
  • An L-band Linear Accelerator System for E-beam sterilization is under construction for bio-technology application. The klystron-modulator system as an RF microwave source has an important role as major components to offer the system reliability for long time steady-state operations. A PFN line type pulse generator with a peak power of 71.5-MW, $7\;{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7\;{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present measurements and its analysis on the design parameters, and an initial test result as well as a design concept on the high-power pulse transformer.

  • PDF

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구 (A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source)

  • 김종수;임근희;이성진;김승민;조창호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권12호
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

Three Phase Voltage Source Soft Switching Inverter with High Frequency Pulse Current Transformers

  • Inaba, Claudio Y.;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제2권4호
    • /
    • pp.288-296
    • /
    • 2002
  • In this paper, a high frequency transformer - assisted auxiliary active resonant commutated snubber (HFTA-ARCS) for voltage source soft switching pulse width modulated power conversion circuits is presented. A three phase voltage source type soft switching inverter incorporating HFTA-ARCS circuits in its three bridge legs can reduce current rating of auxiliary active power switches and has sensorless simplified control scheme which any specified boost current management is not required for soft switching. Its operation principle and digital control scheme are described and a practical design method of circuit parameters on this HFTA-ARCS circuit is also introduced on the basis of computer simulation. Moreover, this space voltage vector modulated soft switching inverter system with DSP-based digital control scheme Is discussed and its effectiveness is proved on the basis of performance evaluations. The operating performances of this inverter system are also compared with those of conventional three-phase hard switching inverter under practical conditions of specified parameters.

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

Research on Discontinuous Pulse Width Modulation Algorithm for Single-phase Voltage Source Rectifier

  • Yang, Xi-Jun;Qu, Hao;Tang, Hou-Jun;Yao, Chen;Zhang, Ning-Yun;Blaabjerg, Frede
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.433-445
    • /
    • 2014
  • Single phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). As the fundamental part of large scale PECs, single-phase VSC has a wide range of applications. In the paper, as first, on the basis of the concept of the discontinuous pulse-width modulation (DPWM) for three-phase VSC, a new DPWM of single-phase VSR is presented by means of zero-sequence component injection. Then, the transformation from stationary frame (abc) to rotating frame (dq) is designed after reconstructing the other orthogonal current by means of one order all-pass filter. Finally, the presented DPWM based single-phase VSR is established analyzed and simulated by means of MATLAB/SIMULINK. In addition, the DPWMs presented by D. Grahame Holmes and Thomas Lipo are discussed and simulated in brief. Obviously, the presented DPWM can also be used for single-phase VSI, GCI and APF. The simulation results show the validation of the above modulation algorithm, and the DPWM based single-phase VSR has reduced power loss and increased efficiency.

전기집진기용 마이크로 펄스 전원장치 개발 (Development of A Micro Pulse Concept Power Supply for E.P)

  • 남정한;김종화;조창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1022-1024
    • /
    • 1999
  • With the increasing demands for clean environment, development of air cleaning systems has been received increasing attention. One of the key technologies in the electrostatic precipitator (EP) is high voltage pulsed power supply, which affects the performance of the overall system. In this study, a high voltage microsecond pulse power supply for the EP is developed for 500MW coal power plants. The power supply has a DC source and a pulsed one. The ratings of the DC and the pulse source are 60kV, 800mA and 70kV, 400mA, respectively.

  • PDF