• Title/Summary/Keyword: Pulse Operation

Search Result 779, Processing Time 0.034 seconds

An Experimental Investigation of the G-M type Pulse Tube Refrigerator

  • Park, Seong-Je;Koh, Deuk-Yong;Yeom, Han-Kil;Hong, Yong-Ju;Kim, Hyo-Bong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.40-45
    • /
    • 2004
  • The experimental results of the G-M (Gifford-McMahon) type pulse tube refrigerators are presented in this paper. The pulse tube refrigerator, which has no moving parts at its cold section, is attractive in obtaining higher reliability, simpler construction, and lower vibration than any other small refrigerators. The objectives of this study are to develop the design technology of the G-M type pulse tube refrigerator and acquire its application methods for replacing G-M cryocooler. As a preliminary test, the refrigeration performances of the basic, orifice, and double inlet pulse tube refrigerators were investigated. The lowest temperature obtained in the one-stage pulse tube refrigerator was 34.4K and the refrigeration capacity at the optimum operation condition was 23W at 80K. And the lowest temperature of the second stage cold head in the two-stage pulse tube refrigerators was 18.3K and the refrigeration capacities at optimum condition were 0.45W at 20K and 20W at 80K, respectively. Finally, the lowest temperature obtained in the three-stage pulse tube refrigerator was 29.8K and the refrigeration capacity at the optimum operation condition was 1.3W for 40K and 5W for 70K.

The Design of Model Reference Adaptive Controller via Block Pulse Functions (블럭펄스 함수를 이용한 기준 모델 적응 제어기 설계)

  • Kim, Jin-Tae;Kim, Tai-Hoon;Lee, Myung-Kyu;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • This paper proposes a algebraic parameter determination of MRA(Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily inn a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

Operation Characteristic and Harmonic Analysis of 200-MW Modulator (200-MW 모듈레이터의 동작 특성 및 고조파 해석)

  • Park, S.S.;Oh, J.S.;Cho, M.H.;NamKumg, W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1577-1579
    • /
    • 1994
  • 200-MW pulse modulators(total 11units) for the PLS linac employ the SCR phase control circuit. It controls 3-phase AC line voltage for the high-voltage DC power supply (DCPS, maximum of 25kVDC, 4.2A) which charges the pulse forming network(PFN). The PFN delivers 400kV, 500A, ESW $7.5{\mu}s$ pulse power to the 80-MW klystron amplifier tube. The SCR regulates 3-phase AC power and feeds to the high voltage transformer. Two different types of the transformer configurations namely ${\Delta}-{\Delta}$ and ${\Delta}-Y$, are alternatively installed to 11 modulator units for the suppression of harmonic noises. RC filters and reactors are also installed. Currently, approximately 110-kW of average AC power per unit is consumed at the normal operation level of the modulator with 30pps. This paper presents the operational characteristics of the high power pulse modulator, especially the experimental results of the AC line harmonic components generated by the operation of the high power pulse modulator to suppress the switching noises from the SCR and rectifying diode arrays.

  • PDF

High power pulse source

  • 안수길
    • 전기의세계
    • /
    • v.11
    • /
    • pp.14-17
    • /
    • 1963
  • 정확하게 control된 pulse의 용도는 과학과 공업이 발달될수록 날로 많아져 가고 있는데 그의 일부는 대전력을 취급하는 경우로서, Radar에 대한 응용을 들 수 있다. 한편, 요지음 gallium-arsenide등 반도체 diode를 사용해서 Laser action을 일으킬 수 있다는것이 발견되어 G.E. 및 IBM등에서 개발되고 있다. 이 경우에, continuous emission도 가능하지만 흔히, intermittent operation을 시켜야 할 때가 많기 때문에 timed pulse source가 필요하게 된다. 또 한편, spot welding의 경우에도 이러한 pulse source가 필요하게 된다. 이들을 크게 나누어 source를 AC로 할 경우와 DC로 할 경우가 있는데, 전자의 경우는 thyratron을 사용할 경우가 많게 될 것이다. DC의 경우나 AC의 경우에나 잘 shape되고 time된 pulse source를 만들어 놓으면 진공관이나 thyratron이나 같은 모양으로 drive할 수 (thyratron의 경우는 trigger)있을 것이기 때문에, 이러한 pulse source를 만들 필요가 있게 된다.

  • PDF

Parameter Estimation of The Distributed System via Improved Block Pulse Coefficients Estimation

  • Kim, Tai-hoon;Shim, Jae-sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.61.6-61
    • /
    • 2002
  • In these days, Block Pulse functions are used in a variety of fields such as the analysis and controller design of the systems. In applying the Block Pulse function technique to control and systems science, the integral operation of the Block Pulse series plays important roles. This is because differential equations are always involved in the representations of continuous-time models of dynamic systems, and differential operations are always approximated by the corresponding Block Pulse series through integration operational matrices. In order to apply the Block Pulse function technique to the problems of continuous-time dynamic systems more efficiently, it is necessary to find th...

  • PDF

Analysis of Linear System by using Block Pulse function's Differential Operation (블럭펄스 함수 미분 연산식을 이용한 시스템 해석에 관한 연구)

  • Ahni, Pius;Sim, J.S.;Chae, Y.M.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.581-583
    • /
    • 1997
  • For the last two decades, many researchers have interests in orthogonal functions by reason of its applicability on linear system analysis. But they only used integral operation matrix of orthogonal functions to solve the state space equations. Thus, this paper present some new result of differential operation of block-pulse functions from a numerical point of view.

  • PDF

Fabrication and Operation Testing of an Air-cored Pulse Transformer for Charging a High Voltage Pulse Forming Line (고압 펄스 성형라인 충전을 위한 공심형 고압 펄스트랜스의 제작과 동작 특성)

  • Jin, Yun-Sik;Kim, Young-Bae;Kim, Jong-Soo;Ryoo, Hong-Je;Cho, Chu-Hyun;Rim, Geun-Hee;Lim, Soo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.939-944
    • /
    • 2010
  • A high voltage air-cored helical strip/wire type pulse transformer has been fabricated for charging of a high voltage pulse forming line. As a primary coil, copper strip of 25mm width was wound helically around a MC nylon cylinder. For a secondary coil, copper enameled wire of 1mm diameter was wound around conical cylinder in order to provide insulation between two windings. The coupling coefficient of 0.53 was obtained when two coils were combined coaxially in the insulation oil filled chamber. Voltage gain and energy transfer efficiency were investigated by varying the parameters of primary and secondary circuit. Test results shows that the voltage gain increases up to 17 with increasing the primary capacitance up to 200nF. And highest energy transfer efficiency of 44% was obtained when the dual resonant operation condition was nearly satisfied. The pulse transformer developed in this study can be used for charging the middle conductor of a Blumlein pulse forming line.

A Novel Frequency-to-Digital Converter Using Pulse-Shrinking

  • Park, Jin-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, a new frequency-to-digital converter without an analog element is proposed. The proposed circuit consists of pulse-shrinking elements, latches and D flip-flops, and the operation is based on frequency comparison by the pulse-shrinking element. In the proposed circuit, the resolution of digital output can be easily improved by increasing the number of the pulse-shrinking elements. The FDC performance is improved in viewpoints of operating speed and chip area. In designed FDC, error of frequency-to-digital conversion is less than 0.1 %.

Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor (블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

A New High Pulse SCR Inverter for Utility Interactive Renewable Power Generation System (계통연계형 대체에너지 발전시스템을 위한 새로운 고펄스 SCR 인버터)

  • 정재혁;김현정;최세완;김영석;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a new line-commutated SCR inverter for renewable power generation system is proposed. The proposed inverter system includes a 6-pulse SCR inverter and an auxiliary circuit. By the proper operation of the auxiliary circuit, the pulse number of the inverter system is increased and the output voltages and currents harmonics are significantly reduced. Analysis, control and simulation for 24-pulse operation of the proposed scheme is Presented and the experimental results from a laboratory Prototype verify the proposed theory.