• Title/Summary/Keyword: Pulse Laser

Search Result 1,095, Processing Time 0.033 seconds

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.

Resistive Switching Properties of Cr-Doped SrZrO3 Thin Film on Si Substrate (실리콘 기판위에서의 Cr-Doped SrZrO3 박막의 저항변화 특성)

  • Yang, Min-Kyu;Ko, Tae-Kuk;Park, Jae-Wan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.241-245
    • /
    • 2010
  • One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped $SrZrO_3$ perovskite thin films were deposited on a $SrRuO_3$ bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the $SrZrO_3$:Cr perovskite and the $SrRuO_3$ bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than $10^2$. A pulse test showed the switching behavior of the Pt/$SrZrO_3:Cr/SrRuO^3$ device under a pulse of 10 kHz for $10^4$ cycles. The resistive switching memory devices made of the Cr-doped $SrZrO_3$ thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.

PIV System for the Flow Pattern Anaysis of Artificial Organs ; Applied to the In Vitro Test of Artificial Heart Valves

  • Lee, Dong-Hyeok;Seh, Soo-Won;An, Hyuk;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.489-497
    • /
    • 1994
  • The most serious problems related to the cardiovascular prothesis are thrombosis and hemolysis. It is known that the flow pattern of cardiovascular prostheses is highly correlated with thrombosis and hemolysis. Laser Doppler Anemometry (LDA) is a usual method to get flow pattern, which is difficult to operate and has narrow measure region. Particle Image Velocimetry (PIV) can solve these problems. Because the flow speed of valve is too high to catch particles by CCD camera, high-speed camera (Hyspeed : Holland-Photonics) was used. The estimated maximum flow speed was 5m/sec and maximum trackable length is 0.5 cm, so the shutter speed was determined as 1000 frames per sec. Several image processing techniques (blurring, segmentation, morphology, etc) were used for the preprocessing. Particle tracking algorithm and 2-D interpolation technique which were necessary in making gridrized velocity pronto, were applied to this PIV program. By using Single-Pulse Multi-Frame particle tracking algorithm, some problems of PIV can be solved. To eliminate particles which penetrate the sheeted plane and to determine the direction of particle paths are these solving methods. 1-D relaxation fomula is modified to interpolate 2-D field. Parachute artificial heart valve which was developed by Seoul National University and Bjork-Shiely valve was testified. For each valve, different flow pattern, velocity profile, wall shear stress and mean velocity were obtained.

  • PDF

Non-linear optical properties of PECVD nanocrystal-Si nanosecond excitation (PECVD로 제조된 나노결정실리콘 비선형 광학적특성)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Kim, Joo Hoe;Kim, Chul Joong;Lee, Chang Gwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • A study of the non-linear optical properties of nanocrystal-Si embedded in SiO2 has been performed by using the z-scan method in the nanosecond and femtosecond ranges. Substoichiometric SiOx films were grown by plasma-enhanced chemical-vapor deposition(PECVD) on silica substrates for Si excesses up to 24 at/%. An annealing at $1250^{\circ}C$ for 1 hour was performed in order to precipitate nanocrystal-Si, as shown by EFTEM images. Z-scan results have shown that, by using 5-ns pulses, the non-linear process is ruled by thermal effects and only a negative contribution can be observed in the non-linear refractive index, with typical values around $-10-10cm^2/W$. On the other hand, femtosecond excitation has revealed a pure electronic contribution to the nonlinear refractive index, obtaining values in the order of 10-12 cm2/W. Simulations of heat propagation have shown that the onset of the temperature rise is delayed more than half pulse-width respect to the starting edge of the excitation. A maximum temperature increase of ${\Delta}T=123.1^{\circ}C$ has been found after 3.5ns of the laser pulse maximum. In order to minimize the thermal contribution to the z-scan transmittance and extract the electronic part, the sample response has been analyzed during the first few nanoseconds. By this method we found a reduction of 20% in the thermal effects. So that, shorter pulses have to be used obtain just pure electronic nonlinearities.

  • PDF

Characteristics of $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x= 0, 0.05, 0.1) thin films for PRAM (PRAM을 위한 $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x= 0, 0.05, 0.1) 박막의 특성)

  • Kim, Sung-Won;Song, Ki-Ho;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.21-22
    • /
    • 2008
  • In the paper, we report several experimental data capable of evaluating the phase transformation characteristics of $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x =0, 0.05, 0.1) thin films. The $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ phase change thin films have been prepared by thermal evaporation. The crystallization characteristics of amorphous$Ag_x(Ge_2Sb_2Te_5)_{1-x}$ thin films were investigated by using nano-pulse scanner with 658 nm laser diode (power; 1~17 mW, pulse duration; 10~460 ns) and XRD measurement. It was found that the more Ag is doped, the more crystallization speed was 50 improved. In comparision with $Ge_2Sb_2Te_5$ thin film, the sheet resistance$(R_{amor})$ of the amorphous $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ thin films were found to be lager than that of $Ge_2Sb_2Te_5$ film($R_{amor}$ $\sim10^7\Omega/\square$ and $R_{cryst}$ 10 $\Omega/\square$). That is, the ratio of $R_{amor}/R_{cryst}$ was evaluates to be $\sim10^6$ This is very helpful to writing current reduction of phase-change random acess memory.

  • PDF

Time Resolved Electron Spin Resonance Spectroscopy of Anthrasemiquinone Radical Produced by Pulse Laser Photolysis. A Study on Chemically Induced Dynamic Electron Polarization (광화학 반응에서 생성된 Anthrasemiquinone Radical의 시간분해 ESR ; CIDEP에 관한 연구)

  • Hong Daeil;Kuwata Keiji
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.404-412
    • /
    • 1990
  • The time resolved electron spin resonance spectroscopy are used to two measurement methods of chemically induced dynamic electron polarization (CIDEP) and absorption ESR. The spectra of the semiquinone radical anion were successively detected in the laser flash photolysis of anthraquinone in the mixtures of 2-propanol and triethylamine. The semiquinone radical anion was fairly stable and its cw ESR could be observed. The rate constant (T1$^{-1}$) of the spin-depolarization of polarized semiquinone radical anion was 2.6 ${\times}\;1-^5$ sec$^{-1}$ and the decay of the radical anion was the first order with the rate constant (K$_1}$) of 300.0 sec$^{-1}$. The intensity of CIDEP spectra increased with the increasing the microwave power, but the Torrey wiggles appeared following with decay curves.

  • PDF

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Multiplexed Hard-Polymer-Clad Fiber Temperature Sensor Using An Optical Time-Domain Reflectometer

  • Lee, Jung-Ryul;Kim, Hyeng-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Optical fiber temperature sensing systems have incomparable advantages over traditional electrical-cable-based monitoring systems. However, the fiber optic interrogators and sensors have often been rejected as a temperature monitoring technology in real-world industrial applications because of high cost and over-specification. This study proposes a multiplexed fiber optic temperature monitoring sensor system using an economical Optical Time-Domain Reflectometer (OTDR) and Hard-Polymer-Clad Fiber (HPCF). HPCF is a special optical fiber in which a hard polymer cladding made of fluoroacrylate acts as a protective coating for an inner silica core. An OTDR is an optical loss measurement system that provides optical loss and event distance measurement in real time. A temperature sensor array with the five sensor nodes at 10-m interval was economically and quickly made by locally stripping HPCF clad through photo-thermal and photo-chemical processes using a continuous/pulse hybrid-mode laser. The exposed cores created backscattering signals in the OTDR attenuation trace. It was demonstrated that the backscattering peaks were independently sensitive to temperature variation. Since the 1.5-mm-long exposed core showed a 5-m-wide backscattering peak, the OTDR with a spatial resolution of 40 mm allows for making a sensor node at every 5 m for independent multiplexing. The performance of the sensor node included an operating range of up to $120^{\circ}C$, a resolution of $0.59^{\circ}C$, and a temperature sensitivity of $-0.00967dB/^{\circ}C$. Temperature monitoring errors in the environment tests stood at $0.76^{\circ}C$ and $0.36^{\circ}C$ under the temperature variation of the unstrapped fiber region and the vibration of the sensor node. The small sensitivities to the environment and the economic feasibility of the highly multiplexed HPCF temperature monitoring sensor system will be important advantages for use as system-integrated temperature sensors.

Analyses of Laser Induced Demagnetization and Remagnetization in Carbon Doped FePt Thin Films (탄소가 도핑 된 FePt 박막에서의 펨토 초 펄스 레이저에 의한 자기 소거와 회복 분석)

  • Song, Hyon-Seok;Ko, Hyun Seok;Hong, Jung-Il;Shin, Sung-Chul;Lee, Kyeong-Dong;Park, Byong-Guk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.39-42
    • /
    • 2015
  • After preparing carbon-doped FePt films by dc magnetron sputtering, we observed ultrafast demagnetization and its recovery by means of a time-resolved magneto-optical Kerr effect technique. We confirm that the degree of $L1_0$ ordering is decreased and coercivity is changed, as the carbon concentration increases. All samples are demagnetized within ~5 ps after the femtosecond laser pulse heated the sample. Interestingly, ultrafast relaxation time, which indicates fast magnetization recovery, increases as the carbon concentration increases due to the low spin-orbit coupling of carbon.