• Title/Summary/Keyword: Pulse Frequency

Search Result 1,954, Processing Time 0.034 seconds

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

The Effects of Pulse Current on the Surface Appearance of Chromium Plating (크롬 전착층의 표면광택에 미치는 펄스도금의 영향)

  • 한성호;권식철;여운관
    • Journal of Surface Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.215-220
    • /
    • 1981
  • The surface appearance of chromium electrodeposit was studied by employing a pulse curr-ent plating in self-regulating high speed (SRHS) bath containing 20 g/$\ell$, K2SiF6 7.5 g/$\ell$ SrSO4 and 250 g/$\ell$ CrO3. As the pulse frequency increased, the surface appearance changed suddenly from bright a-ppearance in a direct current plating condition to gray one in the range of pulse frequency less than about 20KHz. However the bright appearance is recovered as the pulse frequen-cy exceeded 20 KHz. This phenomena seemed to be related with the preferred orientation of electrodeposits, considering the relationship between the preferred orientation of elect-rodeposits and surface appearance in a SRHS bath. Direct current plating was also applied to both Sargent and SRHS bath and investigat-ion on surface appearance was extended to the high current density of 400 A/dm2. In a Sa-rgent bath, the increase in bath temperature was necessary for bright appearance as the current density was increased within 150 A/dm2, but bright region was shown in the cons-tant temperature of 70-75$^{\circ}C$ above the current density of 150A/dm2. On the other hand, two regions of surface brightness was found in a SRHS bath. One is region in the low temperature less than 25$^{\circ}C$ and the other in the moderate temperature range from 55$^{\circ}C$ to 65$^{\circ}C$.

  • PDF

Characteristics of Compensation for Distorted Optical Pulse with Initial Frequency Chirp in 3 X 40 Gbps WDM Systems Adopted Mid-Span Spectral Inversion

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for distorted optical pulse of wavelength division multiplexed(WDM) channel with initial frequency chirp generated in optical transmitter. The WDM channel signal distortion is due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM) in fiber. The considered system is 3 ${\times}$ 40 Gbps intensity modulation direct detection(IM/DD) WDM transmission systems, which adopted mid-span spectral inversion(MSSI) as compensation method. We confirmed that the effect of initial frequency chirp on compensation for signal distortion due to a SPM is gradually decreased as a dispersion coefficient of fiber becomes gradually small. But, in the aspect of a compensation for signal distortion due to both SPM and XPM, the effect of initial frequency chirp on compensation is gradually decreased as a dispersion coefficient of fiber becomes gradually large.

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.

The Characteristics on the Removal of Bacteria Using High Voltage and High Frequency Pulsed Power System (고압 고주파 펄스 파워 시스템을 이용한 세균 제거 특성)

  • Shim, Ji-Young;Kim, Mi-Jeong;Park, Je-Wook;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1416-1417
    • /
    • 2007
  • The high frequency pulsed power system is widely available for use in high frequency generator applications. We designed and fabricated our own high frequency pulsed power system to obtain very sort pulse width and high peak value and investigated microbe removal characteristics using it. This paper introduces a simple high voltage high frequency pulsed power system for removing various bacteria caused by dirty water. This system include power supply circuit, switching MOSFET, and flyback converter. We can also control the switching using a PIC one chip microprocessor. As a result, we can obtain good removing characteristics of various bacteria by adjusting the charging voltage, the pulse repetition rate and the electrical field inducing time.

  • PDF

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF

An Analysis of the HEMP Interference Effect in OFDM System (OFDM 시스템에 미치는 HEMP 간섭 영향 분석)

  • Seong, Yun-Hyeon;Chang, Eun-Young;Yoon, Seok-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.244-249
    • /
    • 2015
  • High-altitude electromagnetic pulse (HEMP) is generated from a nuclear burst at high altitudes above the Earth, the electromagnetic fields reach the ground nearly simultaneously with regard to the operation time of systems. The aim of this analysis is to inquire about HEMP characteristics and to analyze about effect in orthogonal frequency division multiplexing (OFDM) system. Specifically, HEMP characteristics are classified field sources, spatial coverage, time domain behavior, frequency spectrum and field intensities in this study. Bits error rate (BER) of the receiver with the software simulation is confirmed for the HEMP effect. Q-factor made a difference about interference duration by transfer characteristics of system. When Q factor is smaller, the recovery time from HEMP interference is short. To the contrary, if the Q factor is larger, the recovery duration is lasted longer by 300-600%.

Assesment of Heart Rate Variability by Integral Pulse Frequency Modulation Model (IPFM 모델의 해석을 통한 심박변이도 해석)

  • Park, Sang-Eun;Kim, Jeong-Hwan;Jeung, Gyeo-Wun;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.799-804
    • /
    • 2015
  • This study aims at the new analysis of heart beat fluctuations by applying physiological Heart Rate Variability Model with representing the cardiac control system in sympathetic and parasympathetic-coupling oscillator constants, Cs and Cp. To find the effects of coupling constants on the beat-to-beat fluctuations, Integral Pulse Frequency Modulation (IPFM) model is adopted to generate the time series data of ECG R-peaks and represent them by poincaré scattergram plot in the time domain and HRV in the frequency domain, respectively. The actual poincaré plots and HRV spectrum are also analyzed by acquiring the experimental data from the subjects exposed to the emotional-stress invoking environment and the function of the coupling constants are verified in terms of antagonism in sympathetic and parasympathetic activity.

A Double-Hybrid Spread-Spectrum Technique for EMI Mitigation in DC-DC Switching Regulators

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Randomizing the switching frequency (RSF) to reduce the electromagnetic interference (EMI) of switching power converters is a well-known technique that has been previously discussed. The randomized pulse position (RPP) technique, in which the switching frequency is kept fixed while the pulse position (the delay from the starting of the switching cycle to the turn-on instant within the cycle) is randomized, has been previously addressed in the literature for the same purpose. This paper presents a double-hybrid technique (DHB) for EMI reduction in dc-dc switching regulators. The proposed technique employed both the RSF and the RPP techniques. To effectively spread the conducted-noise frequency spectrum and at the same time attain a satisfactory output voltage quality, two parameters (switching frequency and pulse position) were randomized, and a third parameter (the duty ratio) was controlled by a digital compensator. Implementation was achieved using field programmable gate array (FPGA) technology, which is increasingly being adopted in industrial electronic applications. To evaluate the contribution of the proposed DHB technique, investigations were carried out for each basic PWM, RPP, RSF, and DHB technique. Then a comparison was made of the performances achieved. The experimentally investigated features include the effect of each technique on the common-mode, differential-mode, and total conducted-noise characteristics, and their influence on the converter’s output ripple voltage.