• Title/Summary/Keyword: Pulse Echo

Search Result 314, Processing Time 0.031 seconds

High-Resolution MRI Study on Mouse Brain Using Micro-Imaging (초고해상도 미세영상 기법을 이용한 Mouse 뇌의 자기공명영상 연구)

  • Han, Doug-Young;Yoon, Moon-Hyun;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Purpose : By using the micro-imaging unit modified from NMR spectrometer, the high resolution MRI protocols of finer than 100 micron in 5 minutes, is sought for mouse, which plays a central role in animal studies Materials and Methods : C57BL/6 mouse, lighter than 50 gram, is used for the experiments. The superconducting magnet is vertical type with 89 mm inner diameter at 4.9 Tesla. The diameter of rf-coil is 30 mm. Mostly used techniques are the fast spin echo and the gradient echo pulse sequence. Results : For 2D images, proton density and T2 weighted images are obtained and their optimum experimental variables were sought. Minute structure of mouse brain can be recognized and 3D brain image is also obtained additionally. 3D image will be useful particularly for the dynamic contrast study using various contrast agents. Conclusion : Like the case of human and other small animals, the high resolution of mouse brain is enough to recognize the minute structure of it. Recently, similar studies are reported domestically, but it seems only a beginning stage. Due to easiness of breeding/control, mouse MRI study will soon play a vital part in brain study.

  • PDF

Variation in Echolocation and Prey-capture Behavior of Rhinolophus ferrumequinum during Foraging Flight (관박쥐(Rhinolophus ferrumequinum)의 먹이포획 과정에 대한 행동 및 반향정위 변화)

  • Chung, Chul Un;Kim, Sung Chul;Jeon, Young Shin;Han, Sang Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • In this study, we analyzed the changes in the echolocation and prey-capture behavior of the horseshoe bat Rhinolophus ferrumequinum from search phase to capture time. The experiment was conducted in an indoor free-flight room fitted with an ultra-high-speed camera. We found that the bats searched for food while hanging from a structure, and capturing was carried out using the flight membrane. In addition, it was confirmed that the mouth and uropatagium were continuously used in tandem during the capturing process. Furthermore, using Constant Frequency (CF), we confirmed that the prey catching method reflected the wing morphology and echolocation pattern of R. ferrumequinum. The echolocation analysis revealed that the pulse duration, pulse interval, peak frequency, start-FM-bandwidth, and CF duration decreased as the search phase approached the terminal phase. Detailed analysis of echolocation pulse showed that the end-FM bandwidth, which increases as it gets nearer to the capture time of prey, was closely related to the accurate grasp of the location of an insect. At the final moment of prey capture, the passive listening that stopped the divergence of the echolocation was identified; this was determined to be the process of minimizing the interruption from the echo of the echolocation call emitted from the bat itself and sound waves emitted from the prey.

Sensitivity Analysis of Polarimetric Observations by Two Different Pulse Lengths of Dual-Polarization Weather Radar (펄스길이에 따른 이중편파변수의 민감도 분석)

  • Lee, Jeong-Eun;Jung, Sung-Hwa;Kim, Jong-Seong;Jang, KunIl
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.197-211
    • /
    • 2019
  • The observational sensitivity of dual-polarization weather radar was quantitatively analyzed by using two different pulse widths. For this purpose, test radar scan strategy which consisted of consecutive radar scan using long (LP: $2{\mu}s$) and short (SP: $1{\mu}s$) pulses at the same elevation angle was employed. The test scan strategy was conducted at three operational S-band dual-polarization radars (KSN, JNI, and GSN) of Korea Meteorological Administration (KMA). First, the minimum detectable reflectivity (MDR) was analyzed as a function of range using large data set of reflectivity ($Z_H$) obtained from JNI and GSN radars. The MDR of LP was as much as 7~22 dB smaller than that of SP. The LP could measure $Z_H$ greater than 0 dBZ within the maximum observational range of 240 km. Secondly, polarimetric observations and the spatial extent of radar echo between two pulses were compared. The cross-polar correlation coefficient (${\rho}_{hv}$) from LP was greater than that from SP at weak reflectivity (0~20 dBZ). The ratio of $Z_H$ (> 0 dBZ) and ${\rho}_{hv}$(> 0.95) bin to total bin calculated from LP were greater than those from SP (maximum 7.1% and 13.2%). Thirdly, the frequency of $Z_H$ (FOR) during three precipitation events was analyzed. The FOR of LP was greater than that of SP, and the difference in FOR between them increased with increasing range. We conclude that the use of LP can enhance the sensitivity of polarimetric observations and is more suitable for detecting weak echoes.

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

Analysis of Impedance of Multilayer Structure using Cepstrum Technique (켑스트럼 기법을 이용한 다층구조물의 임피던스 해석)

  • Shin, Jin-Seob;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.85-89
    • /
    • 1997
  • In this paper, the imdedance for each layer using triple cepstrum signal processing for reflected ultrasonic signal from the multilayer structure has been analyzed. The reflection coefficient can be obtained from the amplitude and the polarity of the peaks in the triple cepstrum, and then the impedance of each layer has been reconstructed by the reflection coefficient. In this experiment, four types of multilayers consisting of different metal layers were manufactured. The reflected signals from the multilayer structure have been detected by pulse-echo method. The impedances have been reconstructed by triple cepstrum technique. The experimental results have been in good agreement with the theoretical results.

  • PDF

A Study on Ultrasonic Wave Propagation Model in Multi-Layer Media (다중 접착계면의 초음파 전달 모델 연구)

  • Lim, Soo-Yong;Kim, Dong-Ryun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2012
  • This research simulates the ultrasonic wave propagation in multi-layered media using generalized formular of system response function. We made the artificial defect specimen of a rocket motor and compared with experimental wave forms. The simulation results are coincide with measured waves and we found that the pulse echo method is able to detect unbond defect at liner-propellant interface.

Wavelet Encoded MR Imaging (웨이블릿 부호화 자기공명영상)

  • Kim, Eung-Kyeu;Lee, Soo-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.343-346
    • /
    • 2005
  • In this study, a basic concept of wavelet encoding and its advantages over Fourier based phase encoding application. Wavelet encoding has been proposed as an alternative way to Fourier based phase encoding in magnetic resonance imaging. In wavelet encoding, the RF pulse is designed to generate wavelet-shaped excitation profile of spins. From the resulting echo signals, the wavelet transform coefficients of spin distribution are acquired and an original spin density is reconstructed from wavelet expansion. Wavelet encoding has several advantages over phase encoding. By minimizing redundancy of the data acquisition in a dynamic series of images, we can avoid some encoding steps without serious loss of quality in reconstructed image. This strategy may be regarded as data compression during imaging. Although there are some limitations in wavelet encoding, it is a promising scheme in a dynamic imaging.

  • PDF

Visibility Enhancement of the Ultrasonic Signal Reflected from Adhesive Layers (접착층에서 반사된 초음파 신호의 가시도 개선)

  • Shin, Jin Seob;Lee, Jeong-Ihll
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.153-157
    • /
    • 2008
  • Recently, electronic devices is produced by multilayer structure, therefore analysis for hidden layers is important nondestructive inspection. This paper presents visibility enhancement methods for the ultrasonic multiple echoes reflected from adhesive layer in the multilayers using digital signal processing. The reflected signals from the multilayers come out interval of the peaks in the power cepstrum. In the experiment, the adhesive layers of settled thickness using epoxy were formed. The reflected signals from the multilayer is detected by pulse-echo method and power cepstrum is processed for enhancement of visibility.

  • PDF

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility

  • Cheong, Yong-Moo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1463-1471
    • /
    • 2017
  • In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.