Browse > Article
http://dx.doi.org/10.1016/j.net.2017.05.002

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility  

Cheong, Yong-Moo (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute)
Kim, Kyung-Mo (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute)
Kim, Dong-Jin (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.49, no.7, 2017 , pp. 1463-1471 More about this Journal
Abstract
In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.
Keywords
FAC (Flow Accelerated Corrosion); High Temperature Pipe Thinning; Ultrasonic Waveguide; Structural Health Monitoring; Ultrasonic Thickness Monitoring;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Kim, Y. Cho, J. Lee, Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave, Nucl. Eng. Tech. 42 (2010) 546-551.   DOI
2 H.S. Chung, A review of CANDU feeder wall thinning, Nucl. Eng. Tech. 42 (2010) 568-575.   DOI
3 Y.H. Choi, S.C. Kang, Evaluation of piping integrity in thinned main feedwater pipes, J. Kor. Nucl. Soc. 32 (2000) 67-76.
4 F. Inada, Japanese pipe wall thing management based on JSME rules and recent R&D studies to enhance the rules, in: IAEA Technical Meeting/Workshop on E/C Including FAC and EAC Issues in NPP, April 2009.
5 A. Macnab, K.J. Kirk, A. Cochran, Ultrasonic transducers for high temperature application, IEE. Proc. Sci. Meas. Tech. 145 (1998) 229-236.   DOI
6 A. Megriche, L. Lebrun, M. Troccaz, Materials of $Bi_4Ti_3O_{12}$ type for high temperature acoustic piezo-sensors, Sens. Actuators A 78 (1999) 88-91.   DOI
7 K.T. Wu, M. Kobayashi, C.K. Jen, Integrated high-temperature piezoelectric plate acoustic wave transducers using mode conversion, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (2009) 12181224.   DOI
8 R. Kazys, A. Voleisis, R. Sliteris, B. Voleisiene, L. Mazeika, P.H. Kupschus, H.A. Abderrahim, Development of ultrasonic sensors for operation in a heavy liquid metal, IEEE Sens. J. 6 (2006) 1134-1143.   DOI
9 A. Baba, C.T. Searfass, B.R. Tittermann, High temperature ultrasonic transducer up to $1000^{\circ}C$ using lithiumniobate single crystal, Appl. Phys. Lett. 97 (2010) 232901.   DOI
10 R. Kazys, V. Voleisis, B. Voleisiene, High temperature ultrasonic transducers: review, Ultrasound 63 (2008) 7-17.
11 W.J. Zhou, M.N. Ichchou, J.M. Mencik, Analysis of wave propagation in cylindrical pipes with local inhomogeneities, J. Sound Vib 319 (2009) 335-354.   DOI
12 N. Nurmalia, H. Nakamura, M. Ogi, K. Hirao, Nakahata, Mode conversion behavior of SH guided wave in a tapered plate, NDT E Int. 45 (2012) 156-161.   DOI
13 Y.M. Cheong, H.P. Kim, D.H. Lee, A shear horizontal waveguide technique for monitoring of high temperature pipe thinning, in: Trans. Korean Nuclear Society Spring Meeting, May 2014.
14 F. Honarvar, F. Salehi, V. Safavi, A. Mokhtari, A.N. Sinclair, Ultrasonic monitoring of erosion/corrosion thinning rates in industrial piping systems, Ultrasonics 53 (2013) 1251-1258.   DOI
15 R. Carandente, A. Lovstad, P. Cawley, The influence of sharp edges in corrosion profiles on the reflection of guided waves, NDT E Int. 52 (2012) 57-68.   DOI
16 L.A. Francis, J.M. Friedt, P. Bertrand, Influence of electromagnetic interferences on the mass sensitivity of Love mode surface acoustic wave sensors, Sens. Actuators A 123-124 (2005) 360-369.   DOI
17 S. Dixon, C. Edwards, S.B. Palmer, High accuracy non-contact ultrasonic thickness gauging of aluminum sheet using electromagnetic acoustic transducers, Ultrasonics 39 (2001) 445-453.   DOI
18 Y.M. Cheong, H.N. Kim, H.P. Kim, An ultrasonic waveguide technique for online monitoring of the high temperature pipe thinning, in: Trans. Korean Society for Non-destructive Testing Spring Conf., May 2013.
19 F.B. Celga, P. Cawley, J. Allin, J. Davies, High-temperature (>$500^{\circ}C$) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers, IEEE Trans. Ultrason. Ferroelectric. Freq. Control 58 (2011) 156-167.   DOI
20 Y.M. Cheong, J.H. Kim, J.H. Hong, H.K. Jeong, Measurement of dynamic elastic constants of rpv steel weld due to localized microstructural variation, J. Korean Soc. Non-Destructive Test. 20 (2001) 559-564.