• Title/Summary/Keyword: Pulse Discharge Technology

Search Result 156, Processing Time 0.025 seconds

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

A Case Study of Applicability of Machines of Pulse Powered Underreamed Anchors (펄스방전 확공형 앵커용 시공 장비의 적용성 검토)

  • Kang, Kum-Sik;Kim, Jae-Hyung;Cho, Gyu-Yeon;Kim, Tae-Hoon;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1100-1106
    • /
    • 2009
  • This study intends to develop a pulse discharge device to strengthen the pushing power by expanding the cavity of the anchor settlement to form a spheric root for the purpose of constructing the economical and stable anchor. and, a series of field test were carried out in order to check applicability of machines of pulse powered underreamed anchors. Through the experiments, the electrical characteristics of the pulse power equipment had been identified it and the dynamic pressure generated from the subsequent change had been measured. Here, the measured dynamic pressure is the cavity expansion pressure to impact on the ground around the anchor settlement. Since this pressure has effects of cavity expansion and bored surface hardening with dynamic hardening effects on the anchor settlement, it is expected that it will largely contribute the increase of pushing power with a strong frictional resistance.

  • PDF

A Study on the New Partial Discharge Pattern Analysis System used by PA Map (Pulse Analysis Map) (PA Map(Pulse Analysis Map)을 이용한 새로운 부분방전 패턴인식에 관한 연구)

  • Kim, Ji-Hong;Kim, Jeung-Tae;Kim, Jin-Gi;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1092-1098
    • /
    • 2007
  • Since one decade, the detection of HFPD (High frequency Partial Discharge) has been proposed as one of the effective method for the diagnosis of the power component under service in power grids. As a tool for HFPD detection, Metal Foil sensor based on the embedded technology has been commercialized for mainly power cable due to its advantages. Recently, for the on-site noise discrimination, several PA (Pulse analysis) methods have been reported and the related software, such as Neural Network and Fuzzy, have been proposed to separate the PD (Partial Discharge) signals from the noises since their wave shapes are completely different from each other. On the other hand, the relevant fundamental investigation has not yet clearly made while it is reported that the effectiveness of the current methods based on PA is dependant on the types of sensors. Moreover, regarding the identification of the vital defects introducible into the Power Cable, the direct identification of the nature of defects from the PD signals through Metal Foil coupler has not yet been realized. As a trial for solving above shortcomings, different types of software have been proposed and employed without any convincing probability of identification. In this regards, our novel algorithm 'PA Map' based on the pulse analysis is suggested to identify directly the defects inside the power cable from the HFPD signals which is output of the HFCT and metal foil sensors. This method enables to discriminate the noise and then to make the data analysis related to the PD signals. For the purpose, the HFPD detection and PA (Pulse Analysis) system have been developed and then the effect of noise discrimination has been investigated by use of the artificial defects using real scale mockup. Throughout these works, our system is proved to be capable of separating the small void discharges among the very large noises such as big air corona and ground floating discharges at the on-site as well as of identifying the concerned defects.

Shrinkproofing of Wool Fabrics by Pulse Corona Discharge and Enzymes

  • Cho, Sung-Mi;Toru Takagishi;Mitsuru Tahara
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.96-96
    • /
    • 2003
  • In this article modification of wool fibers and fabrics by pulse corona discharge and enzymes, in particular purified keratinase with a single component has been carried out to improve their surface properties. The shrinkproofing, tensile strength, weight loss, and the primary hand values calculated from the mechanical properties of the dual treated wool fabrics were investigated. In addition, the surface morphology of wool fiber was observed under the dry and wet conditions using an environmental SEM, ESEM.

  • PDF

Demonstration of a Modular Electrostatic Precipitator to Control Particulate Emissions from a Small Municipal Waste Incinerator

  • Intra, Panich;Yawootti, Artit;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.239-246
    • /
    • 2014
  • Incineration is conceptually sound as a waste treatment technology. There is, however, concern over its emissions when it is improperly designed and operated. An electrostatic precipitator is one of the most commonly used devices to control particulate emissions from boilers, incinerators and some other industrial processes. In this work, a modular electrostatic precipitator with sizing of $1m{\times}1m{\times}1m$ was developed for removal of particulate matter from the exhaust gases of a small waste incinerator. Its design was based on a simple wire-and-plate concept. The corona discharge wires were connected to a positive high-voltage pulse generator, while the collection plates were grounded. The high-voltage pulse generator was used to produce the corona discharge field between the individual discharge wire and the collection plate. The particulate-laden exhaust gas flow was directed across the corona discharge field. The charged particles were deflected outward and collected on the plate. The collection efficiency was evaluated as a mass loading ratio between the difference at the inlet and the outlet to the particulate loading at the inlet of the precipitator. The collection efficiency of this modular electrostatic precipitator design was approximately 80 %.

A Study on Operation Characteristics of Three Electrode Trigger Gap Switch (3전극 트리거 갭 스위치 동작특성에 관한 연구)

  • Hong, Tae-Yun;Han, Sang-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.549-553
    • /
    • 2018
  • The applications of the pulse power technology are expanding and the necessity of a large current switch as a core component of pulsed power is increasing. A trigger gap switch composed of three electrodes was fabricated and the discharge characteristics were studied according to the change of the pressure, the shape of the main electrode, and the gap distance when the trigger pulse was applied. As a main result, the stable operation range was confirmed through the discharge inception voltage according to the gap distance and electric field analysis was performed in the same structure to confirm the electric field value of the discharge inception voltage.

Implementation of crowbar circuit for high-speed discharge·charge switching and its characteristic analysis (고속 방전·충전 스위칭 전원차단회로 설계 제작 및 특성분석)

  • Lee, Min-woong;Cho, Seong-ik;Lee, Nam-ho;Jeong, Sang-hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.885-892
    • /
    • 2017
  • In this paper, we proposed a novel crowbar circuit for high-speed discharge charge switching to solve discharge charge-time delay of supply voltage in the conventional crowbar circuit. The proposed circuit is designed to increase the charge-speed after high-speed discharge of supply voltage, thereby reducing the time exposed to radiation damage and, the normal operation time of electronic system after passing the pulse radiation. The simulation of the discharge charge-times before the implement of the hardware is conducted using Cadence's pspice tool, and DUT (Device Under Test) board is fabricated in the device level. The comparison measurement of the crowbar circuits is performed on the satellite-electronic device for 24V. As the result, we confirmed the high-speed function of the proposed circuit by improvement of the discharge-speed 96.8% and the charge-speed 27.3% as compared with the conventional circuit.

Development of a Pulse Light System for Treating Skin Pigmentation (피부의 색소치료를 위한 펄스 광 시스템의 개발)

  • Jeun, Jong-Baeg;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.81-87
    • /
    • 2021
  • In this study the skin care system was designed and tested by introducing V-IPL(Variable-Intense Pulse Light) methods that allow various skin treatments. The discharge method, a new method of switching on the flash lamp sequentially according to the lesions, was used. Pulse shape control is implemented in the system using the conventional LC variable method and the switching method control method of the switching element. As a result, the pulse width could be varied up to 1[㎛] by using a microprocessor, and by turning on the flash lamp sequentially along the lesions the depth and width, the pulse shape and pulse shape could be more diverse. We could also make long pulses of up to 1~100[ms] in various pulse width. And the special differences between the existing system and the proposed system in this study are as follow. Existing system is one pulse(pulse width : 1~40ms) and proposed system is three pulse(pulse width : 1~100ms).

Investigation of EDM Characteristics of Nickel-based Heat Resistant Alloy

  • Kang, Sin-Ho;Kim, Dae-Eon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1475-1484
    • /
    • 2003
  • The EDM processing characteristics of one of the nickel-based heat resistant alloys, Hastelloy- X, were investigated under the various EDM conditions and analyzed in terms of surface integrity. This alloy is commonly used as a material for the hot gas path component of gas turbines and it is difficult to machine by conventional machining methods. The primary EDM parameter which was varied in this study were the pulse-on time. Since the pulse-on time is one of the main factors that determines the intensity of the electrical discharge energy, it was expected that the machining ratio and the surface integrity of the specimens would be proportionally dependent on the pulse-on duration. However, experimental results showed that MRR (material removal rate) and EWR (electrode wear rate) behaved nonlinearly with respect to the pulse duration, whereas the morphological and metallurgical features showed rather a constant trend of change by the pulse duration. In addition the heat treating process affected the recast layer and HAZ to be recrystallized but softening occurred in recast layer only. A metallurgical evaluation of the microstructure for the altered material zone was also conducted.