• Title/Summary/Keyword: Pulp cell

Search Result 195, Processing Time 0.029 seconds

Cell Wall Micropore Loading of Pulp Fibers (펄프 섬유의 세포벽 미세공극 충전)

  • Lee, Jong-Man;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF

A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast (치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구)

  • Lee, Joong-Kyou;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Ultraviolet Microscopic Study on Lignin Distribution in the Fiber Cell Wall of BCTMP

  • Yoon, Seung-Lak;Yasuo Kojina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • Bleached chemithermomechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching in order to improve the optical properties of high yield pulp. This pulp was used for the evaluation of optical properties improvement, chemical characteristics of lignin in fiber and the relationship between lignin and optical properties in fiber cell wall. Hydrogen peroxide treatment improved the brightness, but the post color number (PC No.). There was little improvement on optical properties by ozone treatment, but this could be improved more by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make any change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved, due to the removal of non-aromatic conjugated structure.

Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review

  • Dina A. Hammouda;Alaa M Mansour;Mahmoud A. Saeed;Ahmed R. Zaher;Mohammed E. Grawish
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells (영구치 치수 기질세포를 이용한 연골 분화 및 분화 시기에 따른 형태학적 변화)

  • Chung, Choo-Ryung;Kim, Ha-Na;Park, Yeul;Kim, Min-Jeong;Oh, Young-Ju;Shin, Su-Jung;Choi, Yoon-Jeong;Kim, Kyung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Objectives: The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods: Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results: Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions: Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day) of differentiation.

Analysis of Flexural Strength of Seedling Pots Made by a Pulp-Molding Machine under Different Water Contents (펄프 몰드식 육묘포트의 성형조건 및 수분 흡습에 따른 굴곡 하중 특성 분석)

  • Song, D.B.;Jeong, J.W.;Kim, C.H.;Huh, M.R.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.43-51
    • /
    • 2009
  • Paper mill sludges are discharged around 870,000 M/T annually. Only 30% of the paper mill sludge have been recycled and the rest has been disposed by land fill, incineration, ocean abandonment and other ways. Because of overall prohibition of sludge disposal by London Dumping Convention in 2012, a urgent counter measure for paper mill sludge must be provided. In this paper, some basic experiments were carried out to develop a tray cell pot using paper mill sludge for increasing the recycling potential of the wasted sludge. To establish the manufacturing parameters, the tray cell pots were made with three types of materials including virgin pulp, old news paper and corrugated board mixed in a blend tank of a molding machine. The bending force and moisture content of the produced tray cell pots was measured to confirm the application capability. The tray cell pot could be manufactured under the condition of over 20% of virgin pulp, 40% of old news paper added. However, the corrugated board could not be used because of the glutinous substance included. The produced tray cell pot absorbed water very easily and the bending force decreased rapidly. The waterproof material must be used to applicate the produced tray cell pot in plant growing fields.

FLOW CYTOMETRIC ANALYSIS OF LYMPHOCYTES IN NORMAL AND INFLAMED PULP (유세포분석기를 이용한 정상치수조직과 염증성 치수조직 내의 임파구 분포에 관한 연구)

  • Kim, Seon-Ah;Bae, Kwang-Shik;Im, Seong-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.374-387
    • /
    • 1997
  • The purpose of this study was to examine the distribution of lymphocyte populations in normal, reversibly inflamed and irreversibly inflamed human dental pulp tissues using flow cytometry. Flow cytometry, with specific antibody and fluorochrome reagent allows us to know cellular properties of hematolymphoid cells by measuring fluorescence of stained cells. Before extirpation of pulps in routine endodontic treatment, the clinical diagnosis were performed by symptom. The extirpated pulp tissues were divided into normal pulp group (N=5), reversible pulpit is group(N=10) and irreversible pulpitis group(N=7). The specimen was placed into RPMI 1640 medium, minced into small pieces, and then digested in medium with collagenase. The cell suspension was resuspended in PBS for monoclonal antibody staining of T lymhocytes(CD3+), B lymphocytes (CD19+), T helper cell (CD4+) and T supressor cell (CD8+). The percentages of cells were counted by FACStar(BD) flow cytometer. Following results were obtained; 1. In the most normal and inflamed pulps, the percentages of T lymphocyte, B lymphocytes, T helper cell and T suppressor/cytotoxic cell were less than 1 % in total counted pulpal cells. 2. The higher percentages of T, B, T helper and T suppressor cells were observed in irreversible pulpitis group as compared with the normal pulp and reversible pulpitis group but the differences between groups were not statistically significant (p>0.05). 3. The percentages of T helper cells (CD4 + cells) were greater than that of T suppressor/cytotoxic cells (CD8 + cells) in the inflamed pulps.

  • PDF

Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells (사람의 치수 및 치주인대 세포에 대한 Bioaggregate 시멘트의 생체적합성에 대한 연구)

  • Chung, Choo-Ryung;Kim, Eui-Seong;Shin, Su-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.473-478
    • /
    • 2010
  • Objectives: This study was performed to investigate the biocompatibility of newly introduced Bioaggregate on human pulp and PDL cells. Materials and Methods: Cells were collected from human pulp and PDL tissue of extracted premolars. Cell culture plate was coated either with Bioaggregate or white MTA, then the same number of cells were poured to cell culture dishes. Cell attachment and growth was examined under a phase microscope after 1,3 and 7 days of seeding. Cell viability was measured and the data was analyzed using Student t-test and one way ANOVA. Results: Both types of cells used in this study were well attached and grew healthy on Bioaggregate and MTA coated culture dishes. No cell inhibition zone was observed in Bioaggregate group. There was no statistical difference of viable cells between bioaggreagte and MTA groups. Conclusions: Bioaggregate appeared to be biocompatible compared with white MTA on human pulp and PDL cells.

ULTRAVIOLET MICROSCOPIC STUDY ON LIGNIN DISTRIBUTION IN THE FIBER CELL WALL OF BCTMP

  • Seung-Lak YooN;Yasuo KOJIMA;Lee, Seon-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.375-380
    • /
    • 1999
  • In order to improve the optical properties of high yield pulp, bleached chemi-thermo-mechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching. This pulp was used for the evaluation of the improvement of optical properties, chemical characteristics of lignin in fiber, and the relationship between lignin and optical properties in fiber cell wall. By hydrogen peroxide treatment, the brightness was improved, but the post color number (PC No.) was not. There was little improvement on optical properties by ozone treatment, but his could be solved by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make nay change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved due to the removal of non-aromatic conjugated structure.