• Title/Summary/Keyword: Pullout resistance performance

Search Result 19, Processing Time 0.028 seconds

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

Pullout Resistance of Geosynthetic Strip with Rounded Band Anchor (수동저항부가 형성된 띠형 섬유보강재의 인발저항 특성)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • This paper describes the results of pullout tests in the laboratory, which are conducted to assess the pullout performance of recently developed geosynthetic strip reinforcement with rounded band anchor. The geosynthetic strip can be used as reinforcements in reinforced soil wall with concrete block facing. The pullout resistance of the geosynthetic strip with rounded band anchor is mobilized by the combination of the interface friction between soil-reinforcement surface and the passive soil resistance caused by the rounded band anchor. Therefore, both the friction resistance and the passive resistance have to be considered in design. From the pullout test results, when the rounded band anchor are formed in the end part of the geosynthetic strip, pullout strength increases about from 10% to 65%. The passive resistance can be evaluated based on the pullout test results.

Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts (상대밀도와 세립분 함유율이 현장타설말뚝의 인발저항 성능에 미치는 영향에 관한 연구)

  • You, Seung-Kyong;Hong, Gigwon;Jeong, Minwoo;Shin, Heesoo;Lee, Kwang-Wu;Ryu, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.37-47
    • /
    • 2018
  • This paper described a results of direct shear test and pullout test by using soil supported by drilled shafts in order to evaluate the effect of relative density and fines content on pullout resistance performance of drilled shafts. The result of direct shear test showed that the variation characteristics of internal friction angle and cohesion could be confirmed quantitatively. The result of pullout test also showed that the effect of relative density and fines content on pullout resistance performance of drilled shafts was confirmed. That is, the contribution of the internal friction angle and cohesion of soils on the pullout resistance performance of drilled shafts was found to vary, when the fines content was about 13% based on results direct shear test and pullout test. Therefore, at design of drilled shafts, the effect of skin friction resistance should be considered on the influence factor of strength parameters ($c-{\phi}$) according to the fines content of soil.

Pullout Test of Headed Reinforcement (Headed Reinforcement 인발실험)

  • 박명기;신인용;최동욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.203-208
    • /
    • 2001
  • Objectives of this study included design of head and evaluation of the pullout performance of the headed reinforcement that can be used to replace standard hooks in the building exterior beam-column joints. Results of 36 pullout tests are presented. Test variables included reinforcing bar diameters (16-25mm), embedment depth (6-7db), transverse reinforcement, and single-vs.-group pullout behavior. The square head designed had gross area of 4Ab and thickness of db. The headed reinforcement made of Dl6 bars developed pullout strengths close to the bar yield strength, but larger bars developed strengths smaller than the yield strengths. The pullout resistance increased with decreasing spacing of the transverse reinforcement. Use of column ties with 6.0-db spacing improved the pullout performance of the headed bars without causing difficulties in fabricating the specimens. The comparison of the pullout performances between the headed bars and the standard hooks revealed that strengths, stiffnesses, and ductile behaviors are about the same.

  • PDF

The Evaluation for Pullout Performance of Steel Strip Reinforcements with Deformed-Bars as Transverse Members (지지부재로 이형철근을 설치하는 띠형 강보강재의 인발성능 평가)

  • Jung, Sung-Gyu;Kim, Juhyong;Cho, Samdeok;Lee, Kwangwu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.77-86
    • /
    • 2013
  • Laboratory pullout tests were conducted to evaluate pullout performance of steel strip reinforcements with deformed steel bars as transverse members. The steel strip reinforcement has an installation hole to assemble a deformed steel bar. Jumunjin standard sand is used to form a relative density of ground model to 80%. Frictional resistance of steel strip reinforcement without transverse member increases sharply at the initial displacement and quickly decreases with displacement. Maximum frictional resistance increases linearly as normal pressure increasing, and soil-reinforcement interaction friction angle(${\rho}_{peak}$) of a steel strip reinforcement is estimated to $14.64^{\circ}$. Passive resistance increases with displacement and converge into maximum passive resistance in most cases. Maximum passive resistance increases linearly as normal pressure increasing irrespective of shape of the steel reinforcement. Pullout force of steel strip reinforcements with installation holes or transverse members largely increases about 4 to 7 times compared to frictional resistance force of steel strip reinforcements when embedment length($L_e$) of steel strip reinforcements is 500 mm. In the case of using 2 transverse members, interference effect is observed due to the spacing of 2 transverse members and location of assembly holes and transverse members.

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

Pullout Behavior of Mechanically Stabilized Earth Wall Abutment by Steel Reinforcement and Backfill Properties (금속 보강재와 채움재 특성에 따른 보강토교대의 인발거동 분석 연구)

  • Kim, Taesu;Lee, Soo-Yang;Nam, Moon S.;Han, Heuisoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.750-757
    • /
    • 2018
  • The mechanically stabilized earth wall abutment is an earth structure using a mechanically stabilized earth wall and it uses in-extensional steel reinforcements having excellent friction performance. In order to analyze the pullout behavior of in-extensional steel reinforcements usually applied on the mechanically stabilized earth wall abutment, effects of stiffness and particle-size distributions of backfills and also horizontal spacings were considered in this study. As a result of parametric analyses, the highest pulling force acted on the uppermost reinforcement, and the stiffness and the particle-size distributions of the backfill significantly affected the pulling resistance of the reinforced soils. The internal friction angle of backfills should be at least 25 degrees, the coefficient uniformity factor should be at least 4, and the horizontal spacing of the uppermost steel reinforcement should be less than 25cm. Therefore, in order to secure the pullout resistance of the reinforced soil, it is necessary a properly spacing of reinforcement and more strict quality control for the backfill.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Effects of polymer support fluid on shaft resistance of offshore bored piles

  • Chungsik Yoo;Chun-Won Shin
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.519-528
    • /
    • 2023
  • In this paper, we present the results of an experimental study on the effect of polymer support fluid on shaft resistance of offshore bored piles. A series of pullout tests were performed on bored piles installed under various boundary conditions considering different types of grounds and support fluids, and a range of support fluid exposure times. Contrary to previous studies concerning onshore bored piles, a time dependent effect of polymer fluid on shaft resistance was observed in all ground types. The adverse effect of polymer support fluid on the shaft resistance, however, was considerably less than bentonite support fluid for a given exposure time. No significant reduction in shaft resistance was evident when limiting the exposure time of the polymer support fluid to the side wall of the borehole within 2-3 hours. The degree to which the polymer fluid affects shaft resistance seemed to vary with the ground type. A proper consideration should be given to the time dependent effect of polymer fluid on shaft resistance of bored piles installed in offshore construction environment to limit its adverse effect on the pile performance. The practical implications of the findings are discussed.