• Title/Summary/Keyword: Pullout Resistance

Search Result 125, Processing Time 0.022 seconds

Effect of Ground Confine Pressure on Pullout Resistance of Piles Using Model Experiment (말뚝의 인발저항에 대한 지중 구속압 영향 분석을 위한 실내모형실험)

  • Seung-Kyong You;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • This paper describes the results of a pile pullout test considering the confine pressure and fines content of the ground. The Pullout tests were conducted under various ground conditions using model piles. The effect of ground confine pressure on the pullout resistance and the pullout resistance parameters of the pile were evaluated based on the experimental results. The results of pullout test showed that the maximum pullout resistance occurred at a pullout displacement of about 7mm to 9mm, regardless of the fines content and the confine pressure of the ground. The maximum pullout resistance of the pile decreased as the fines content of the ground increased, and this trend became clearer as the confine pressure increased. The pullout resistance calculated by theoretical formula was compared with the experimental results in order to ensure the reliability of the pullout test results. The comparative results showed that the experimental and theoretical values showed a tendency to decrease the pullout resistance as the fines content increased, in all confine pressure conditions. The analysis result of the pullout resistance parameters confirmed that the pullout resistance was greatly influenced by the adhesion compared to the interface friction angle, as the fines content of the ground around the pile increased.

Pullout Resistance Characteristics of the Wedge-shaped Soil Nail (쐐기형 쏘일 네일의 인발 거동 특성)

  • Kim, Bum-Joo;Lee, Yong-Jun;Yoon, Yong-Soo;Chung, Min-Kyu;Yoon, Ji-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the pullout resistance characteristic of a wedge-shaped soil nail, made by attaching small steel sticks to the tip of a nail in a wedge shape, was investigated. It was developed to improve the overall pullout resistance capacity of the existing soil nail system, composed of nail and grout, by making the wedge provide additional pullout resistance. In order to evaluate the pullout resistance of the wedge shape-soil nail, field pullout tests were conducted, and the results were compared with those for the existing soil nail without the wedge. The field test results showed that the pullout resistance capacity of the wedge-shaped soil nail was 50% larger than that of the existing soil nail without the wedge.

  • PDF

Pullout Resistance by Horizontal Spacing of Geosynthetic Strip (띠형 섬유보강재의 설치간격에 따른 인발저항 특성에 관한 연구)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Lee, Kwang-Wu;Kim, Ju-Hyong;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.315-324
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate the pullout resistance of the geosynthetic strip with or without bearing resistance zone. The test results are indicated that the pullout resistance of the geosynthetic strip without bearing resistance zone is not affected by horizontal spacing. However, the horizontal spacing of reinforcement with bearing resistance zone affects the bearing resistance. In other words, it is indicated that the bearing resistance at spacing of 210mm is larger than that at spacing of 260mm. This means that the pullout strength at spacing of 210mm is larger than that at spacing of 260mm. Therefore.

  • PDF

Pullout Resistance of Steel Strip Reinforcement with Transverse Members using Large-scale Pullout Tests (대형인발시험을 이용한 수동지지저항 부재가 설치된 강재스트립 보강재의 인발저항 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • In this study, the large-scale pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results clearly showed the passive effect by normal stress. This suggests that both friction resistance and passive resistance by normal stress should be taken into account in the evaluation of pullout resistance for design. Therefore, The evaluation results confirmed that the developed steel strip reinforcement with transverse members depend heavily on passive resistance by normal stress.

  • PDF

The Study on Pullout Resistance Characteristics of the Compression Anchor by Pullout Tests on the Field (현장실험에 의한 압축형 앵커의 인발거동특성 연구)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.44-52
    • /
    • 2002
  • The mechanism of pullout resistance of compression anchor is analysed. This anchor is developed through the field pullout tests and the laboratory element test. The compression anchor is characterized by decrease of progressive failure, simple site work, economy and durability compared with tension anchor. The characteristics of compression anchor, compared with tension anchor. mainly are summarized as follows ; (1) The plastic displacement of anchor body is very small during pullout of anchor. (2) Total anchor length decreases by the shortening of free length; (3) The progressive failure is decreased.; (4) The safety factor for pullout resistance increases with time after construction of anchor.

Pullout Resistance of Geosynthetic Strip with Rounded Band Anchor (수동저항부가 형성된 띠형 섬유보강재의 인발저항 특성)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • This paper describes the results of pullout tests in the laboratory, which are conducted to assess the pullout performance of recently developed geosynthetic strip reinforcement with rounded band anchor. The geosynthetic strip can be used as reinforcements in reinforced soil wall with concrete block facing. The pullout resistance of the geosynthetic strip with rounded band anchor is mobilized by the combination of the interface friction between soil-reinforcement surface and the passive soil resistance caused by the rounded band anchor. Therefore, both the friction resistance and the passive resistance have to be considered in design. From the pullout test results, when the rounded band anchor are formed in the end part of the geosynthetic strip, pullout strength increases about from 10% to 65%. The passive resistance can be evaluated based on the pullout test results.

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

An Evaluation of Pullout Behavior Characteristics of the Steel Strip Reinforcement Bolted with Braced Angles (버팀재 볼트 접합형 강재스트립 보강재의 인발거동특성 평가)

  • 김홍택;방윤경;정중섭;박시삼;김현조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.419-426
    • /
    • 2002
  • In this study, the steel strip reinforcement bolted with braced angles is displayed skin friction resistance as well as passive resistance through existing the steel strip reinforcement. To understand pullout behavior characteristics, friction effects between soil and reinforcement are evaluated with the width of reinforcement, magnitude of surcharge, and existence of passive resistance member through laboratory pullout test. To analyze interference effects for passive resistance member, various tests are carried on case that the number, the location, and the spacing of braced angles are different. Using this test result, pullout resistance factor is calculated to consider location of braced angles and degree of interference for spacing ratio.

  • PDF

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

Analytical Study on the Pullout Resistance Characteristics of Bored Pile (매입말뚝의 인발저항특성에 관한 연구)

  • Park, Jong-Bae;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Structural experiment result showed that PHC(d=600mm) Pile used as a common compression member could resist 83.6 ~ 91.6 tonf of ultimate tension force, if the adhesion of P.C. bar of PHC pile to the concrete foundation is strengthened. Considering a proper safety factor to ultimate tension strength, PHC pile can substitute the anti-floating anchor, or reduce the number of anchors. For this purpose, pullout resistance behavior of a Bored pile embedded in real ground as well as structural tension strength of PHC pile must be evaluated. This study performed the static pullout tests to evaluate the pullout behavior of bored pile, and compared the test results with design value of side resistance. To evaluate the pullout resistance easily, static pullout test results were compared with dynamic loading test results using PDA. As a result, cement paste of the bored pile was hardened which is after 15 days, LH side resistance design value corresponded well to the Static pullout test results, also to the side resistance evaluated by dynamic loading test.