• Title/Summary/Keyword: Pull-out technique

Search Result 61, Processing Time 0.027 seconds

Improved Modeling of the Effects of Thermal Residual Stresses on Single Fiber Pull-Out Problem

  • Chai, Young-Suk;Park, Byung-Sun;Yang, Kyung-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.823-830
    • /
    • 2001
  • The single fiber pull-out technique has been commonly used to characterize the mechanical behavior of fiber/matrix interface in fiber reinforced composite materials. In this study, an improved analysis considering the effect of thermal residual stresses in both radial and axial directions is developed for the single fiber pull-out test. It is found to have the pronounced effects on the stress transfer properties across the interface and the interfacial debonding behavior.

  • PDF

Revision of a Pull-out Suture Anchor in the Lateral Row During the Suture-bridge Technique

  • Kim, Kyung-Cheon;Rhee, Kwang-Jin;Shin, Hyun-Dae;Byun, Ki-Yong;Yang, Jae-Hoon;Kim, Dong-Kyu;Kim, Bo-Kun
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2009.03a
    • /
    • pp.159-159
    • /
    • 2009
  • Repeated pulling-out of a suture anchor in the lateral row despite repeated attempts at insertion during a rotator cuff repair is not uncommon with the suture-bridge technique, especially in patients with osteoporosis. We describe a simple procedure for dealing with the pull-out of a PushLock anchor in the lateral row using a suture anchor with a suture eyelet during rotator cuff repair applying the suture-bridge technique.

  • PDF

Study of Soil Nailing Application as a Reinforcement Method for Slided Slope (붕괴사면보강을 위한 Soil Nailing의 적용성에 관한 연구)

  • 이성철;김명학
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.127-134
    • /
    • 2000
  • Soil nailing is in-situ ground improvement technique of reinforcing soils using passive inclusions for the purpose of slope stability. Also soil nailing, in general, was used and studied as a reinforcement technique at cut slope, but this paper presents the results of study for soil nailing application as a reinforcement technique at the banking over slided slope. In-situ pull-out tests of nails, instrumented with strain gauges, were performed to investigate the maximum pull-out load and to calculate the unit side resistance in each different layer. And the apparent average unit side resistance of this study was compared with that of other sites installed at cut slope.

  • PDF

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF

Pull-out repair for root tear of medial meniscus (내측 반월상 연골 후방 골 기시부 파열의 수술적 봉합술)

  • Kim, Deok-Weon;Moon, Jeong-Seok;Kim, Min-Gun;Kim, Jin-Goo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.9 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • Purpose: This study is to evaluate the clinical findings of media] meniscus root tear, pull-out repair technique and it's short term results. Materials and Methods: From September 2003 to August 2004, 23 cases of total 27 medial meniscus root tears were treated by pull-out repair technique. Mean age was 60.2 years old. The pull-out technique was divided into 2 groups In group 1(14/23 cases), anterolateral portal was used and in group 2(9/23 cases), anterolateral and posteromedial portals were used for bed preparation. Concomitant cartilage lesions were documented as ICRS mapping system. The clinical outcomes were evaluated according to Lysholm Knee Score. Results: The postoperative Lysholm Knee Score was 77.1(range; $58{\sim}97$) in group 1 and 81.4(range; $72{\sim}94$) (p>0.05). The failure rate was 3 of 14 cases(21.4%) in group 1 and 1 of 9 cases(11.1%) in group 2. Twenty of 22 cases(90.9%) showed cartilage lesions in weight bearing portion of medial femoral condyle which were 8 grade III and 5 grade IV according to the Outerbridge classification. Conclusion: Pull-out repair seems to be a useful treatment of the medial meniscus root tear for preservation of circumferential hoop tension of meniscus.

  • PDF

Suggestion of Analytical Technique Applying Multi-Linear Models for Analysis of Skin Shear Behavior of Tension-Type Ground Anchors in Weathered Soil (풍화토 정착 인장형 앵커에서 주면전단거동분석을 위한 다중선형모델 적용 해석기법의 제안)

  • Jeong, Hyeon-Sik;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.5-19
    • /
    • 2018
  • The characteristics of the skin shear stress distribution for the fixed length of the ground anchor are extremely nonlinear and the engineering mechanisms are complex relatively. So it is difficult to design the anchors simulating the actual behavior by considering various soil conditions and nonlinear behavior. Due to these limits, constant skin shear stress distributions for the whole fixed length of the ground anchor are usually assumed in the design for the sake of convenience. In this study, to assess the pull-out behavior of the tension-type ground anchors, the in-situ pull-out tests in weathered-soil conditions were carried out. Based on the test results, the skin shear behaviors for the fixed length of tension-type ground anchors were established and the multi-linear slip shear model predicting this behavior and an analytical technique applying this model were proposed. From the similarity between the results of the in-situ pull-out tests and those of the analytical technique, the applicability and availability of the multi-linear slip shear model and the proposed analytical technique were verified. The maximum shear stress was developed at the start point of the fixed length acting with the smaller load than the maximum pull-out load but the minimum shear stress was developed at the start point of the fixed length and the maximum shear stress was developed at the point apart from the start point of the fixed length after the maximum pull-out load.

Modeling of Single Fiber Pull-Out Experiment Considering the Effects of Transverse Isotropy (횡방향 등방성을 고려한 단섬유 인장 실험 모델링)

  • Seol, Il-Chan;Lee, Choon-Yeol;Chai, Young-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1384-1392
    • /
    • 2002
  • Single fiber pull-out technique has been commonly used to characterize the mechanical behavior of interface in fiber reinforced composite materials. An improved analysis considering the effects of transversely isotropic properties of fiber and the effects of thermal residual stresses in both radial and axial directions along the fiber/matrix interface is developed for the single fiber pull-out test. Although the stress transfer properties across the interface is not much affected by considering the transversely isotropic properties of fiber, interfacial debonding is notably encouraged by the effect. The interfacial shear stress that plays an important role in interfacial debonding is very much affected by the component of axial thermal residual stress in the bonded region, which can induce a two-way debonding mechanism.

Arthroscopic Treatment of Fractures of the Intercondylar Eminence of the Tibia Using Pull-Out Wire (견인강선을 이용한 경골극 견열 골절의 관절경적 치료)

  • Kim, Hyun Kon;Kim, Sung Jae;Hahn, Myung Hoon;Kang, Yong Ho;Jung, Hwan Yong
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Recently, a variety of arthroscopic techniques have been reported for the treatment of the displaced tibial eminence fracture. The purpose of this study was to describe details of arthroscopic technique using pull-out wire and to evaluate the results. Eleven patients with irreducible type II and type III tibial eminence fractures underwent the arthroscopic reduction and internal fixation using double strand pull-out wiring. The anterior cruciate ligament tibial drill guide was utilized for the reduction of fracture and passage of the guide pins. The tibial eminence fracture was firmly fixed with double strand 26-gauge pull-out wire(0.45mm diameter). Fracture union was achieved at 7.2 weeks (range, six to eight weeks) after operation. All cases were united at the last follow-up. Subjectively, nine patients had no pain and no restriction of daily activities. Two patients with combined injuries had limitation of knee motion(10 to 130 degrees, respectively) and one patient showed mild anterior laxity. Early rehabilitation was enabled without loss of reduction and breakage of pull-out wire. The arthroscopic reduction and internal fixation using pull-out wire showed good results including early rehabilitation, early fracture union, minimal morbidity, and no requirement of the second operation for hard ware removal.

  • PDF

A Case Study on the Slope Reinforcement by Improved Steel Pipe Nailing (개량 강관네일링 공법을 이용한 사면 보강사례 연구)

  • Choi, Dong-Nam;Lim, Heui-Dae;Song, Young-Su;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.54-60
    • /
    • 2007
  • This paper describes typical design and construction practice for in-situ ground reinforcement technique using improved steel pipe pressure grouting. A case history is presented to illustrate the benefit gained by application of the technique. This technique was applied to cut slopes developed in the construction of auxiliary spillway of 00 dam. Applicable conditions, method of survey, slope stability analysis and construction are given in this parer. As for the construction method, a procedure is given and the main points are the control of construction work. As a result of the pull-out test, it is shown that seel pipe nailing is particularly useful for stabilizing rock slope.

An Experimental Study on the Effects of Steel Fibers used at R/C Exterior Joints (철근 콘크리트 보-기둥 외측 접합부에 적용된 강섬유의 효과에 관한 실험연구)

  • Choi, Ki-Bong;Oh, Jong-Han;Kim, Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.188-193
    • /
    • 1998
  • An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of lateral confinement and fiber reinforcement of joint area were investigated. It was concluded ; (1) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by pull-out of hooked bars; and (2) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers. Application of steel fibers to exterior joints seems to be an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in exterior beam-column connections.

  • PDF