• Title/Summary/Keyword: Pull-out resistance

Search Result 126, Processing Time 0.026 seconds

Assessment of pull-out behavior of tunnel-type anchorages under various joint conditions

  • Junyoung Ko;Hyunsung Lim;Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • This study analyzes the pull-out behavior of tunnel-type anchorage under various joint conditions, including joint direction, spacing, and position, using a finite element analysis. The validity of the numerical model was evaluated by comparing the results with a small-scaled model test, and the results of the numerical analysis and the small-scaled model test agree very well. The parametric study evaluated the quantitative effects of each influencing factor, such as joint direction, spacing, and position, on the behavior of tunnel-type anchorage using pull-out resistance-displacement curves. The study found that joint direction had a significant effect on the behavior of tunnel-type anchorage, and the pull-out resistance decreased as the displacement level increased from 0.002L to 0.006L (L: anchorage length). It was confirmed that the reduction in pull-out resistance increased as the number of joints in contact with the anchorage body increased and the spacing between the joints decreased. The pull-out behavior of tunnel-type anchorage was thus shown to be significantly influenced by the position and spacing of the rock joints. In addition, it is found that the number of joints through which the anchorage passes, the wider the area where the plastic point occurs, which leads to a decrease in the resistance of the anchorage.

Evaluation of Weathered Granite Soil l Geogrid Friction Properties and Pull out Test (화강 풍화토/지오그리드 인발시험 및 마찰특성 평가)

  • 조삼덕;김진만
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.87-100
    • /
    • 1996
  • The pull -out test has been used to investigate the friction properties between soil and grid type geosynthetics which is useful to measure the passive bearing resistance as well as the skin friction. In this paper, the friction properties between geogrid and a weathered granite soil are investigated by performing various pull-out tests. From the test results, a rational pull out test equipment and test method is suggested by evaluating the effects of major factors (such as geogrid width, location of soil box facing, vertical loads and pulll -out displacement rate, etc.) on pull -out test results.

  • PDF

Load-displacement characteristics of belled tension piles embeded in cohesionless soils (사질토지반에 근입된 벨타입 인발말뚝의 하중-변위 특성)

  • Hong, Won-Pyo;Choi, Yong-Sung;Lim, Dae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1114-1119
    • /
    • 2010
  • Pile foundations have been used for upholding superstructure's loads. The researches on pile foundations subjected to compressive forces or horizontal loads have been actively carried out. However, recently, pile foundations, which are subjected to pull-out forces, are getting increased. The study on the pull-out resistance of piles becomes to be important. In addition, it is expected that belled piles will be used more and more, since the belled piles are effective to resist the pull-out forces. But there is still a lack of research on pull-out resistance of belled piles. Therefore, in order to investigate the resisting effect against pull-out of belled piles which is embedded in cohesionless soil. a series of pull-out test is performed on belled piles in field. Especially, the relation between load and displacement is analyzed through the pull-out test.

  • PDF

Pull-out Resistance Behavior of the Anchor with the Bump Type Resistors (돌기형 저항체를 설치한 앵커의 인발저항거동)

  • You, Min-Ku;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.35-43
    • /
    • 2017
  • In this study, the pull-out resistance behavior of the anchor with the bump type resistors at the anchor body was experimentally investigated. In the model tests, the pull-out resistance was measured by pulling out the anchor at a constant speed. Anchor body was installed in the center of the circular sand tank. Pull-out tests were conducted for 10 conditions. The anchor type (existence of the resistor), the friction conditions of the anchor body surface ($1/3{\phi}$, $2/3{\phi}$, ${\phi}$), the bump type resistor set number (1set, 2set, 4set), and the height of resistors (0.05d, 0.10d, 0.20d) were varied. The load-displacement relationship for each conditions was measured during the pull-out tests at a constant speed (1 mm/min). Maximum pull-out length was 80 mm. As a result, the pull-out behavior of the friction type anchor and the expansion type anchor was different. As the number of resistor increased, the maximum pull-out resistance increased and the residual pull-out resistance ratio increased significantly, which were at 171~591 percent larger than that of the friction type anchor.

Influence of geometric factors on pull-out resistance of gravity-type anchorage for suspension bridge

  • Hyunsung, Lim;Seunghwan, Seo;Junyoung, Ko;Moonkyung, Chung
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.573-582
    • /
    • 2022
  • The geometry of the gravity-type anchorage changes depends on various factors such as the installation location, ground type, and relationship with the upper structure. In particular, the anchorage geometry embedded in the ground is an important design factor because it affects the pull-out resistance of the anchorage. This study examined the effect of four parameters, related to anchorage geometry and embedded ground conditions, on the pull-out resistance in the gravity-type anchorage through two-dimensional finite element analysis, and presented a guide for major design variables. The four parameters include the 1) flight length of the stepped anchorage (m), 2) flight height of the stepped anchorage (n), 3) the anchorage heel height (b), and 4) the thickness of the soil (e). It was found that as the values of m increased and the values of n decreased, the pull-out resistance of the gravity-type anchorage increased. This trend is related to the size of the contact surface between the anchorage and the rock, and it was confirmed that the value of n, which has the largest change rate of the contact surface between the anchorage and the rock, has the greatest effect on the pull-out resistance of the anchorage. Additionally, the most effective design was achieved when the ratio of the step to the bottom of the anchorage (m) was greater than 0.7, and m was found to be an important factor in the pull-out resistance behavior of the anchorage.

Development of the Soil Bioengineering Techniques for Restoring of Degraded Forest Area (V) - Pull-out Resistance Characteristics of Shrubs' roots - (산림훼손지복원을 위한 Soil Bioengineering 기술개발(V) - 관목류의 뿌리인발저항 특성 -)

  • Cha, Du-Song;Oh, Jae-Heun;Ji, Byoung-Yun;Cho, Koo-Hyun;Lee, Hae-Joo
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • Pull-out resistance tests of root were carried out for 7 shrub species which are mainly used greening of deteriorated forest slope. Mean pull-out resistance forces of Aralia elata, Salix koreensis and Stephanandra incisa were 37.26 kgf, 34.56 kgf and 26.00 kgf, respectively. The pull-out resistances were high as collar diameter and volume of the root increased. Correlations between root collar diameter and root volume were high in Rubus crataegifolius, but on the other hand, the correlation was lowest in Zanthoxylum schinifolium. There were significant differences in pull-out resistance by root collar diameters, and the difference of pull-out resistance by species showed only below 20 ml root volume.

  • PDF

Evaluation of Behavior Characteristics of Geosynthetic Fiber Nail System from the Field Pull-Out Tests (현장인발시험을 통한 섬유형 쏘일네일의 거동특성 평가)

  • Kim, Hong-Taek;Park, Si-Sam;Cho, Byeong-Guk;Jung, Sung-Pil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.342-347
    • /
    • 2004
  • Excavation nearby the existing structures is being performed vigorously to get the greatest use of land along with fast economic growth in the downtown area. The application of soil nailing system gradually increases because of an advantage of soil nailing system adjacently constructed in the existing structures. In this study, friction resistance by pull-out is considered as main resistance except resistance formed by flexural rigidity of nail observing that resistance of flexural rigidity is about $0{\sim}15\;%$ of whole safety factor according to degree of flexural rigidity in general soil nail wall and application of geosynthetic fiber soil nailing system is evaluated through laboratory tensile strength test and field pull-out test.

  • PDF

A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands (사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

Estimation of Pull-out Behavior for Steel Pile Nailing installed Foldable Wedge by Field Measurement (현장계측에 의한 접이식 웨지 장착 강관네일의 인발거동 평가)

  • Kwon, Kyo-Keun;Choi, Bong-Hyuck;Kim, Kyung-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2009
  • In this study, field pull-out tests were performed for steel pipe nailing installed foldable wedge and non-wedge type steel pipe nailing under the same test conditions. This is to evaluate pull-out resistance improvement effect of steel pipe nailing installed foldable wedge. Evaluating for field pull-out characteristics of steel pipe nailing installed foldable wedge was performed through analysis of ultimate pull-out resistance ($T_L$), ultimate unit skin friction ($q_s$, $u_{max}$), tensile normal stiffness ($K_{\beta}$), tension of nail. As a result, the steel pipe nailing installed foldable wedge have an effect of pull-out resistance increased about 30% in comparison with non-wedge type steel pipe nailing.

  • PDF