Park, Suin;Park, Sohee;Lee, Young Joo;Park, Choon-Seon;Jung, Young-Chul;Kim, Sunah
Journal of Korean Academy of Nursing
/
v.50
no.3
/
pp.333-348
/
2020
Purpose: The present study investigated the association between nurse staffing and health outcomes among psychiatric inpatients in Korea by assessing National Health Insurance claims data. Methods: The dataset included 70,136 patients aged 19 years who were inpatients in psychiatric wards for at least two days in 2016 and treated for mental and behavioral disorders due to use of alcohol; schizophrenia, schizotypal and delusional disorders; and mood disorders across 453 hospitals. Nurse staffing levels were measured in three ways: registered nurse-to-inpatient ratio, registered nurse-to-adjusted inpatient ratio, and nursing staff-to-adjusted inpatient ratio. Patient outcomes included length of stay, readmission within 30 days, psychiatric emergency treatment, use of injected psycholeptics for chemical restraint, and hypnotics use. Relationships between nurse staffing levels and patient outcomes were analyzed considering both patient and system characteristics using multilevel modeling. Results: Multilevel analyses revealed that more inpatients per registered nurse, adjusted inpatients per registered nurse, and adjusted inpatients per nursing staff were associated with longer lengths of stay as well as a higher risk of readmission. More adjusted inpatients per registered nurse and adjusted inpatients per nursing staff were also associated with increased hypnotics use but a lower risk of psychiatric emergency treatment. Nurse staffing levels were not significantly associated with the use of injected psycholeptics for chemical restraint. Conclusion: Lower nurse staffing levels are associated with negative health outcomes of psychiatric inpatients. Policies for improving nurse staffing toward an optimal level should be enacted to facilitate better outcomes for psychiatric inpatients in Korea.
The Journal of Korean Society for School & Community Health Education
/
v.11
no.1
/
pp.67-78
/
2010
Background & Objectives: Current trend is that funding agencies require investigators to share their data with others. However, there is limited guidance how to access and utilize the shared data. We sought to determine what common data sharing practices in U.S.A. are, what data-related to adolescent health are freely available, and how we deal with the large dataset adopting the complex study design. Methods: The study included only research data-related to adolescent health which was collected in USA and unlimitedly accessible through the internet. Only the raw data, not aggregated, was considered for the study. Major keywords for web search were "adolescent", "children", "health", and "school". Results: Current approaches for public health data sharing lacked of common standards and varied largely due to the data's complex nature, large size, local expertise and internal procedures. Some common data sharing practices are unlimited access, formal screened access, restricted access, and informal exclusive access. The Inter-University Consortium for Political and Social Research and the Center for Disease Control and Prevention were the best data depository. "Data on the net" was search engine for the website providing data freely available. Six datasets related to adolescent health freely available were identified. The importance and methods of incorporating complex research design into analysis was discussed. Conclusion: There have been various attempts to standardize process for open access and open data using the information technology concept. However, it may not be easy for researchers to adapt themselves to this high technology. Therefore, guidance provided by this study may help researchers enhance the accessibility to and the utilization of the open source data.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.7
/
pp.816-822
/
2016
Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.
Kim, Jin-Woo;Kim, Jong-Hong;Sohn, Hong-Gyoo;Heo, Joon
Proceedings of the KSRS Conference
/
v.2
/
pp.590-593
/
2006
Timber inventory management includes to measure and update forest attributes, which is crucial information for private companies and public organizations in property assessment and environment monitoring. Field measurement would be accurate, but time-consuming and inefficient. For the reason, remote sensing technology has been an alternative to field measurement from an economic perspective. Among several sensors, LiDAR and Radar interferometry are known for their efficiency for forest monitoring because they are less influenced by weather and light conditions, and provide reasonably accurate vertical/horizontal measurement for a large area in a short period. For example, Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED) in the U.S. can provide tree height information and DSM. On the other hand, LiDAR DSM (the first return) and DEM (the last return) can also present tree height estimation. With respect to project site of loblolly pine plantation in Louisiana in the U.S., the accuracy of SRTM C-Band approach estimating tree height was assessed by the LiDAR approaches. In addition, SRTM X-Band and NED were also compared with the results. Plantation year in inventory GIS, which is directly related to forest age, is high correlated with the difference between SRTM C-Band and NED. As a byproduct, several stands of age mismatch could be recognized using an outlier detection algorithm, and optical satellite image (ETM+) were used to verify the mismatch. The findings of this study were (1) the confirmation of usefulness of the SRTM DSM for forest monitoring and (2) Multi-sensors- Radar, LiDAR, ETM+, MODIS can be used for accuracy improvement of forest inventory GIS altogether.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.6
/
pp.2480-2496
/
2020
Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult to preserve structural details effectively while suppressing noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas of dense connection with residual learning. On one hand, dense connection maximizes information flow between layers in the network, which is beneficial to maintain structural details when denoising images. On the other hand, residual learning paired with batch normalization would allow for decreased training speed and better noise reduction performance in images. The experiments are performed on the 100 CT images selected from a public medical dataset-TCIA(The Cancer Imaging Archive). Compared with the other three competitive denoising algorithms, both subjective visual effect and objective evaluation indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can improve LDCT images quality more effectively while maintaining a low computational cost. In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the best performing algorithm in the comparison algorithms, the proposed network increases it by 7 percentage points.
The First Generation Digitized Sky Survey (DSS-I) is a collection of digitized photographic atlases of the night sky taken from the Palomar Observatory (northen sky) and the Anglo-Australian Observatory (southern sky). DSS-I is widely used by the astronomical community for a number of applications including object cross-identification and astrometry. However, accessing and retrieving the actual images are nontrivial owing to the huge size (> 60 GB) of the dataset. To facilitate retrieval process of DSS-I data for the public, Korean Astronomical Data Center (KADC) developed a web application that provides not only data retrieval but also visualization functions. The web application consists of several modules developed using Java Applet, Jave Servlet, and JaveServer Pages (JSP) technologies. It allows users to retrieve images efficiently in various formats such as FITS, JPEG, GIF, and TIFF, and also offers an interactive visulization tool, ImgViewer, for displaying/analyzing FITS images. To use the web application, users require a Java-enabled web browser.
Journal of Information Technology Applications and Management
/
v.25
no.1
/
pp.19-32
/
2018
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.
Hepatocellular carcinoma (HCC) is amongst the top three cancer causes of death worldwide with hepatitis B and C viruses (HBV/HCV) as the main etiological agents. An up-to-date descriptive epidemiology of the burden of HBV/HCV-associated HCC in the Arab world is lacking. We therefore determined the burden of HBV/HCV-associated HCC deaths in the Arab world using the Global Burden of Disease (GBD) 2010 dataset. GBD 2010 provides, for the first time, deaths specifically attributable to viral-associated HCC. We analyzed the data for the 22 Arab countries by age, sex and economic status from 1990 to 2010 and compared the findings to global trends. Our analysis revealed that in 2010, an estimated 752,101 deaths occurred from HCC worldwide. Of these 537,093 (71%) were from HBV/HCV-associated HCC. In the Arab world, 17,638 deaths occurred from HCC of which 13,558 (77%) were HBV/HCV-linked. From 1990 to 2010, the burden of HBV and HCV-associated HCC deaths in the Arab world increased by 137% and 216% respectively, compared to global increases of 62% and 73%. Age-standardized death rates also increased in most of the Arab countries, with the highest rates noted in Mauritania and Egypt. Male gender and low economic status correlated with higher rates. These findings indicate that the burden of HBV/HCV-associated HCC in the Arab world is rising at a much faster rate than rest of the world and urgent public health measures are necessary to abate this trend and diminish the impact on already stretched regional healthcare systems.
Recently, the necessities of gathering, producing, and sharing criminal information are critically important as intelligence functions of police agencies to improving public safety and national security. However, the inadequacies and barriers within which police agencies have in regard to intelligence functions impede criminal information gathering, intelligence producing within their agency, and intelligence sharing with other agencies. In this study, we analyzed informal networks constructed from a survey dataset of information and intelligence sharing among officers in police agencies. The results revealed the different structural properties of intelligence networks between police agencies. We did find that officers with high indegree and outdegree in a network played critical role on the dynamics and degree of intelligence gathering and assessment responsibilities. Finally, we could find evidence that the potential role of intermediary triggered relational dynamics for developing and sharing critical information among all police agencies.
Kim, In-Woo;Markkandan, Kesavan;Lee, Joon Ha;Subramaniyam, Sathiyamoorthy;Yoo, Seungil;Park, Junhyung;Hwang, Jae Sam
Journal of Microbiology and Biotechnology
/
v.26
no.11
/
pp.1863-1870
/
2016
Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.