• Title/Summary/Keyword: Pt-Ru catalyst

Search Result 79, Processing Time 0.028 seconds

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition (아산화질소 촉매 분해 특성 연구)

  • Yong, Sung-Ju;Park, Dae-Il;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.58-61
    • /
    • 2009
  • The characteristics of nitrous oxide catalytic decomposition were studied to utilize the nitrous oxide as a propellant. The Ru and Pt were selected as nitrous oxide decomposition catalysts and loaded in the $Al_2O_3$ support using an impregnation method. The nitrous oxide conversions as a variation of GHSV and reaction temperature were measured in a tubular reactor. At the low GHSV and high temperature, the conversion was increased, and Ru/$Al_2O_3$ catalyst showed better performance than Pt/$Al_2O_3$ catalyst.

  • PDF

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell

  • Kim, Min-Sik;Lim, Sin-Muk;Song, Min-Young;Cho, Hyun-Jin;Choi, Yun-Ho;Yu, Jong-Sung
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.336-342
    • /
    • 2010
  • Different oxidation treatments on CNTs using diluted 4.0 M $H_2SO_4$ solution at room temperature and or at $90^{\circ}C$ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards $H_2$ oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at $90^{\circ}C$ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.

Electrochemical Behavior of Pt-Ru Catalysts on Zeolite-templated Carbon Supports for Direct Methanol Fuel Cells

  • Lim, Tae-Jin;Lee, Seul-Yi;Yoo, Yoon-Jong;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3576-3582
    • /
    • 2014
  • Zeolite-templated carbons (ZTCs), which have high specific surface area, were prepared by a conventional templating method using microporous zeolite-Y for catalyst supports in direct methanol fuel cells. The ZTCs were synthesized at different temperatures to investigate the characteristics of the surface produced and their electrochemical properties. Thereafter, Pt-Ru was deposited at different carbonization temperatures by a chemical reduction method. The crystalline and structural features were investigated using X-ray diffraction and scanning electron microscopy. The textural properties of the ZTCs were investigated by analyzing $N_2$/77 K adsorption isotherms using the Brunauer-Emmett-Teller equation, while the micro- and meso-pore size distributions were analyzed using the Barrett-Joyner-Halenda and Harvarth-Kawazoe methods, respectively. The surface morphology was characterized using transmission electron microscopy and inductively coupled plasma-mass spectrometry. The electrochemical properties of the Pt-Ru/ZTCs catalysts were also analyzed by cyclic voltammetry measurements. From the results, the ZTCs carbonized at $900^{\circ}C$ show the highest specific surface areas. In addition, ZTC900-PR led to uniform dispersion of Pt-Ru on the ZTCs, which enhanced the electro-catalytic activity of the Pt-Ru catalysts. The particle size of ZTC900-PR catalyst is about 3.4 nm, also peak current density from the CV plot is $12.5mA/cm^2$. Therefore, electro-catalytic activity of the ZTC900-PR catalyst is higher than those of ZTC1000-PR catalyst.

A Study on Sol-gel Preparation of Pt-Ru/C Anode Catalysts for Direct Methanol Fuel Cells (솔-젤 합성에 의한 직접 메탄올 연료전지용 고분산 Pt-Ru/C 음극 촉매의 제조)

  • Lee, Kang-Hee;Kim, Il-Gon;Park, Tae-Jin;Suh, Dong-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • Cryogel and aerogel Pt-Ru/C were synthesized by the sol-gel process for the electrooxidation of methanol. From XRD analysis, it was found that the catalysts had highly dispersed Pt-Ru alloys on carbon support although high temperature treatments have been conducted. Electrocatalytic activities of 3 type aerogel catalysts were investigated in half cell experiments by cyclic voltammetry. Among them, Phloroglucinol-Formaldehyde(PF) type catalyst shows the highest activity. From the results of deactivation test for each catalysts, the aerogel catalysts are found to have excellent durability compared with those prepared by colloidal method.

A Study on the Performance Characteristics of Direct Methanol Fuel Cell with Changing of Catalyst Loading (촉매량 변화에 따른 직접 메탄올 연료전지의 성능 특성에 관한 연구)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.467-473
    • /
    • 2008
  • This study is to investigate the influence of catalyst loading quantity on the direct methanol fuel cell (DMFC) performance. In this paper, Pt-Ru and Pt-black loading as the catalyst were varied from 1 to $4mg/cm^2$ at the anode and cathode, respectively. The experiment was conducted with single fuel cell consisted of $5cm^2$ effective electrode area, serpentine type flow pattern and Nafion 117 membrane. Also, AC impedance and methanol crossover current were measured to investigate the performance loss precisely. As a result, the performance of fuel cell was significantly increased with the increase of cathode catalyst loading. However, the performance did not increase further above a certain Pt-Ru catalyst loading as the increase of anode catalyst loading.

A Study on the RuO2 Electrode Catalyst Prepared by Colloidal Method (콜로이드법으로 합성한 RuO2 전극촉매의 연구)

  • PARK, JIN-NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • $RuO_2$, $PtO_2$, and various $(Ru,Pt)O_2$ colloidal solution were prepared using modified Watanabe method. Electrodes were manufactured by dipping of Ni mesh into the colloidal solution. Manufactured electrodes were characterized by XRD, SEM, and EDS. $(Ru,Pt)O_2$ electrodes showed $RuO_2$ crystal structure and high roughness. The hydrogen evolution reaction (HER) activities were evaluated by Linear Sweep Voltammetry. 1Ru2Pt electrode showed similar activity with commercial electrode, HER potentials are -0.9 V for both.

Synthesis of Carbon-Supported Pt-Ru Catalysts using a Flame Spray Pyrolysis Method for Fuel Electrode of Low Temperature Fuel Cell (화염분무열분해 공정을 이용한 저온 연료전지 연료전극용 탄소담지 Pt-Ru 촉매의 제조)

  • Lee, Hyun-Min;Lee, Dong-Geun
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.69-74
    • /
    • 2012
  • This study describes how successfully a conventional flame aerosol synthesis was used to continuously synthesize Pt-Ru catalysts supported by carbon agglomerates. Nearly spherical catalysts produced in the flame were mainly composed of metallic Pt and Ru with the molar ratio of 1:1 and those sizes were controllable from ~1.5 nm to ~2.0 nm. Nevertheless, only Pt peaks were found from X-ray diffraction experiments, suggesting that amorphous-like Ru was well mixed in the crystalline Pt lattices. It was found from Cyclo-voltamograms and CO stripping experiments that the electrochemical properties of the catalysts are at least comparable to that of a conventional commercial sample.

Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells (탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향)

  • Kim, Byung-Ju;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.